DEPARTMENT OF CHEMISTRY

CHOICE BASED CREDIT SYSTEM (CBCS) OUTCOME BASED EDUCATION SYLLABUS

M.Sc. CHEMISTRY

2020 - 2021 BATCH

DWARAKA DOSS GOVERDHAN DOSS VAISHNAV COLLEGE

(AUTONOMOUS)

College with Potential for Excellence

Linguistic Minority Institution Affiliated to University of Madras

E.V.R. PERIYAR HIGH ROAD,

ARUMBAKKAM, CHENNAI – 600106, TAMILNADU.

INDEX

S.NO	CONTENTS	PAGE NO
1	Vision, Mission	3
2	Eligibility for admission and Program educational objective (PEO)	4
3	Program outcome (PO)	5
4	Program specific outcome (PSO)	6
	SCHEME	
5	Scheme of First Semester	9
6	Scheme of Second Semester	9
7	Scheme of Third Semester	59
8	Scheme of fourth Semester	59
	SYLLABUS	
9	Syllabus for First Semester:	9
10	Syllabus for Second Semester	26
11	Syllabus for Third Semester	59
12	Syllabus for Fourth Semester:	79

D.G.VAISHNAV COLLEGE

VISION

To impart value-based quality academia; to empower students with wisdom and to charge them with rich Indian traditions and culture; to invoke the self, to broaden the same towards nation building, harmony and universal brotherhood

MISSION

To ensure sustained progress and development in imparting quality education, to pioneer new avenues of teaching and research and to emerge as an institution with potential for excellence

DEPARTMENT OF THE CHEMISTRY

VISION

To impart a sound **knowledge** in chemistry to the students that stresses scientific reasoning and problem-solving skills. To equip students with the **skills** required to strengthen their social responsibility and to make them competent in this knowledge-driven society.

MISSION

M1	To educate students with state-of-the-art curriculum, improvised teaching methodologies and progressive research facilities.
	To expose students to a breadth of experimental techniques this will transform them into quality chemist.
	To produce socially responsible chemist who can contribute more to the industry and to address problems of societal importance.
M2	To make the department a thriving center of excellence in teaching, curriculum development and valuable research
M3	To outreach the under-privileged students of the city in the form of workshops, on- line courses, etc that showcase the role of chemistry as central science.

Eligibility for admission to M.Sc.

Pass in B.Sc. Chemistry examination, degree awarded by recognized Indian Universities with Mathematics and Physics, as the allied subjects.

Duration of course

M.Sc. (Two years)

Eligibility for the award of degree

Eligibility for the award of degree: Passing of all the subjects (both in internal and ESE) offered by the college for the course.

PROGRAM EDUCATION OBJECTIVES (PEOs)

PEO1	To produce efficient and intellectual undergraduates with strong fundamentals in organic,
FLOI	
	inorganic, physical and analytical chemistry to pursue higher studies in the field of research,
	innovation and technology
PEO2	To make undergraduates, capable of attaining employment in teaching and industry.
PEO3	To enable postgraduates to develop professionally through life-long learning, higher
1 205	
	education and other creative entrepreneurial pursuits in their areas of expertise or interest.
PEO4	
PEO5	

PEO TO MISSION STATEMENT MAPPING

MISSION STATEMENTS	PEO1	PEO2	PEO3	PEO4	PEO5
M1	3	2	3		
M2	2	1	3		
M3	2	2	3		

CORRELATION:

3-STRONG

2- MEDIUM

PROGRAMME OUTCOMES

At the completion of the M.Sc. Chemistry program, the students of our Department will be able to :

S.N	GRADUATE	PROGRAMME OUTCOMES
0	ATTRIBUTES	
1.	Knowledge	Attain in depth knowledge about the fundamental principles,
		essential facts, conclusions and applications of chemical and
		scientific theories in various domains of chemistry. (PO1)
2.	Critical Thinking	Carry out experiments in the area of organic analysis,
		estimation, derivative process, inorganic semi micro analysis,
		preparation, Kinetic, conductometric and potentiometric
		experiments and spectral analysis applying the domain of
3.	Duchlam Caluina	critical thinking. (PO2)
5.	Problem Solving	Define the background of reaction mechanisms, complex chemical structures, instrumental method of chemical analysis,
		and separation techniques and apply appropriate techniques for
		analysing specific problems both qualitatively and
		quantitatively in laboratories and in industries. (PO3)
4.	Usage of modern tools	Create data using modern chemical tools and ICT for modeling
		and analyze the data obtained from sophisticated instruments
		(like UV-Vis, FTIR, NMR, GCMS, Fluorescence, SEM, TEM
		and XRD) for chemical analysis (PO4)
5.	Communication	Develop Skills to evaluate, analyze and interpret the chemical
		information and data and to communicate effectively within the
		chemical community and with society at large, such as, being
		able to comprehend and write effective reports and design
		documentation, make effective presentations, and give and
6.	Life-long Learning	receive clear instructions. (PO5) Demonstrate scholarly attitude to pursue a career in the field of
0.		chemical education and research and have the zeal and vision
		to engage in independent and life-long learning in the broadest
		context of technological and social change. (PO6)
7.	Ethical Practices and	Generate ideas and solutions for green and sustainable
	Social Responsibility	chemistry and approach towards planning and execution of
		research in frontier areas of chemical sciences. (PO7)
8.	Independent and	Develop entrepreneurial skills in interdisciplinary and
	Reflective Learning	multidisciplinary areas of chemical sciences and its
		applications and develop a zeal to pursue a career in the field
		of chemistry.(PO8)

Mapping of POs TO PEOs

PEO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
PEO 1	3	2	2	2	2	2	1
PEO 2	2	2	3	1	2	2	3
PEO 3	2	3	3	2	1	1	3
PEO 4	3	2	2	2	1	1	2
PEO 5	2	2	2	3	2	2	1

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

PROGRAM SPECIFIC OUTCOMES (PSO's)

At the time of graduation, our post graduates would be able to:

- PSO1. Create, Evaluate, analyze, interpret and effectively apply the basic laws, principles, phenomena, processes and mechanisms involved in the domain of Chemistry
- PSO2. Apply the knowledge of chemistry in the domain of advanced research, education and perspective entrepreneurship.
- PSO3. Solve the complex problems in the field of chemical data analysis, scientific interpretation reaction mechanisms with an understanding on tools to be employed and analytical skills to be applied with proper insight on societal, environmental, safety, legal and cultural impacts of the solution.
- PSO4. Apply the knowledge of chemistry to appreciate, develop and test the theoretical aspects for applications in energy, environment, materials, medicines, and technology.
- PSO5. Use standard laboratory equipments, modern instrumentation and classical techniques to carry out experiments and develop skills to interpret and explain the validity of experimental data in terms of accuracy and underlying theory.

				r	MAX. MARKS					
SEM	PART	TITLE OF THE PAPER	INSTRUCTION HOURS/WEEK	DURATION OF EXAM	CIA	ESE	TOTAL	CREDITS		
		SEMESTER	-I							
	Core I	Organic Chemistry – I	6	3	40	60	100	4		
Ι	Core II	Inorganic Chemistry-I	6	3	40	60	100	4		
1	Core III	Physical Chemistry-I	6	3	40	60	100	4		
	Soft Skill I	-	-	3	40	60	100	2		
		SEMESTER-	II							
	Core IV	Organic Chemistry-II	6	3	40	60	100	4		
	Core V	Inorganic Chemistry-II	6	3	40	60	100	4		
	Core VI	Physical Chemistry-II	6	3	40	60	100	4		
	Core VII	Organic Chemistry Practical - I*	7	6	40	60	100	4		
	Core VIII	Inorganic Chemistry Practical – I*	7	6	40	60	100	4		
II	Elective I	Physical Chemistry Practical – I* OR Computational Chemistry	5	6	40	60	100	3		
	Soft Skill II			3	40	60	100	2		
-			-	3	40	60	100	Z		
	Advanced	Analytical Chemistry Practical-I*	5	6	40	60	100	3		
	Course Open Elective	Seminar	7	_	-	_	_	3		
	Open Elective	Seminar SEMESTER-1	-	-	-	-	-	3		
	Core IX	Organic Chemistry-III	6	3	40	60	100	4		
	Core X	Inorganic Chemistry-III	6	3	40	60	100	4		
	Core XI	Physical Chemistry-III	6	3	40	60	100	4		
	Cole Al	T Hysical Chemistry-III	0	5	+0	00	100	+		
III	Soft Skill III			3	40	60	100	2		
	Son Skii III	Internship (not less than 4		5	-10	00	100	2		
		weeks)	-	-	-	-	-	2		
		SEMESTER-	IV							
	Core XII	Organic Chemistry-IV	6	3	40	60	100	4		
IV	Core XIII	Inorganic Chemistry-IV	6	3	40	60	100	4		
	Core XIV	Physical Chemistry-IV	6	3	40	60	100	4		

SYLLABUS & SCHEME OF EXAMINATION - M.Sc. CHEMISTRY 2020-2021 BATCH

Core XV	Physical Chemistry Practical II*	5	6	40	60	100	4	
Elective II	Organic Chemistry Practical II* OR Research Methodology	7	6	40	60	100	3	
Elective III	Inorganic Chemistry Practical II* OR Modern Instrumental Techniques	5	6	40	60	100	3	
Soft Skill IV	-		3	40	60	100	2	
Advanced Course	Analytical Chemistry Practical-II*	5	6	40	60	100	3	
	Group Project / Review*	-	6	40	60	100	3	
	TOTAL CRED	ITS						
	Elective:12							
	CORE: 60							
Soft skill: 8								
Advanced course:6								
Group project:3								
	Seminar: 3							
	Internship: 02	2						

COURSE TITLE: CORE I – ORGANIC CHEMISTRY – I

Course Code : 1923101	Credits : 04
L:T:P:S : 6:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

LEARNING OBJECTIVES:

This course aims to explain basic concepts in stereo chemistry and conformational analysis of organic molecules. In addition, the reaction mechanism and synthetic application of aliphatic and aromatic substitution reactions in organic synthesis will be discussed in detail.

COURSE OUTCOMES:

At the end of the Course, the Student will be able to:

CO1	Visualize and draw the design of atoms in space in 3D orientation.
CO2	Compare the importance of pharmacokinetic profiles of enantiomers especially used in chiral pharmaceuticals.
CO3	Apply conformational analysis for predicting physico-chemical properties and molecular modeling in screening compounds for biological activity.
CO4	Interpret the concept of aromatic electrophilic and nucleophilic substitution and its effective usage in organic synthesis.
CO5	Recall the organic effects like inductive, resonance and steric effects and its influence in reaction rates and derive the Hammett and Taft equations.
CO6	Assess the reaction mechanism involved using Hammett and Taft and helps to derive quantitative structural relationships for organic compounds.

CO/PO/PSO		РО									PSO				
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	2	3	3	3	3	3	3	3	3	2
CO5	3	3	3	3	2	2	3	3	3	3	3	3	3	2	2
CO6	3	3	3	3	2	2	3	3	3	3	3	3	3	2	2

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. NO	CONTENTS OF MODULE	Hrs	COs
	 STEREOCHEMISTRY 1.1 Stereoisomerism and stereo isomers -Terminology - symmetric, asymmetry, dissymmetry, Prochiral, Chiral, achiral. Chirality and Stereogenic centres, Optical activity – interaction of plane polarized light with optical isomers. 1.2 Topicity and Prostereoisomerism – Identification of homotopic, enantiotopic, diastereotopic atoms /groups, Re and Si faces in simple molecules. 1.3 Axial, planar and helical chirality- A study of dissymmetry of allenes, biphenyls, spiro compounds, trans cyclooctene, cyclononene, Binaphthyls, Cyclophanes, ansa-compounds, and molecules with helical structures. 	Hrs 18	COs CO1, CO2
	1.3 Axial, planar and helical chirality- A study of dissymmetry of allenes, biphenyls, spiro compounds, trans cyclooctene, cyclononene, Binaphthyls, Cyclophanes, ansa-compounds, and	10	

			T1					
	1.5 Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric							
	induction – substrate, reagent and catalyst-controlled reactions;							
	determination of enantiomeric and diastereomeric excess; enantio-							
	discrimination. Resolution by optical method. Crams rule, optical							
	purity. Stereoselectivity, stereospecificity, Enantioselectivity,							
	diastereoselectivity, Regioselectivity and regiospecificity.							
	1.6 Geometrical isomerism- E-Z nomenclature of higher order							
	(substituted and branched) olefins. Geometrical and optical							
	isomerism of disubstituted cyclopropane, cyclobutane and							
	cyclopentanes.							
	CONFORMATIONAL ANALYSIS							
	2.1 Conformation and stability – 1, 2-disubstituted ethane derivatives.							
	Conformational analysis of di-substituted cyclohexanes and their							
	stereo chemical features [geometric and optical isomerism (if							
	shown) by these derivatives].							
	2.2 Conformation and reactivity							
	a. Iodide induced di-debromination of dl/threo- and meso-2,3-							
	dibromobutanes							
	b. Dehydrobromination of threo- and erythro-1-Bromo-1,2-							
	diphenylpropane							
2	c. Reaction of 3-Bromo-2-butanols with HBr	18	CO3					
	d. Reaction of 2-Aminocyclohexanols with HNO ₂							
	e. Substituted cyclohexanols (oxidation and acylation)							
	f. Cyclohexane carboxylic acids (esterification and hydrolysis)							
	2.3 Conformation and stability-2-halocyclohexanones and Alkyl							
	substituted cyclohexanones. – Solvent effects.							
	2.4 Conformation and stereochemistry of cis and trans decalin, 9-methyl							
	decalin							
	2.5 Chemical consequence of conformational equilibrium – Curtin -							
	Hammet principle							
	ALIPHATIC NUCLEOPHILIC SUBSTITUTION REACTIONS							
	3.1 Reactive intermediates: Carbocations, carbanions, free radicals							
3		18	CO4					
	carbenes, nitrenes, and arynes, - Generation, detection, stability and							
	reactivity.							

5	 AROMATIC NUCLEOPHILIC SUBSTITUTION REACTIONS AND DETERMINATION OF REACTION MECHANISM 5.1 Aromatic Nucleophilic Substitution - Methods for the generation of benzyne intermediate and reactions of aryne intermediate. Unimolecular and bimolecular mechanism-benzyne mechanism – Von Ritcher reaction, Vicarious Nucleophilic Substitution (VNS). 	18	CO2, CO5 and CO6
4	 3.4 Substitution at carbon doubly bonded to oxygen and nitrogen - Regioselectivity - ambident nucleophiles such as CN, NO₂, phenoxide and ambident dianions 3.5 Alkylation and acylation of amines, halogen exchange, Von-Braun reaction 3.6 Alkylation and acylation of active methylene carbon compounds, hydrolysis of esters, Claisen and Dieckmann condensations. AROMATIC ELECTROPHILIC SUBSTITUTION REACTIONS 4.1 The arenium ion mechanism – evidences. Orientation and reactivity (ortho, meta and para directing groups). kinetic isotope effects, structural effects on rates, the ortho- para selectivity ratio 4.2 Typical reactions mechanism to be studied with energy considerations - nitration, sulphonation, halogenation, alkylation, acylation and diazonium coupling. Electrophilic substitution via enolization, Stork-enamine reaction. Relationship between kinetic and thermodynamic stability – Hammond postulate 4.3 Formylation reactions - Gatterman, Gatterman-Koch, Vilsmeyer-Hack & Reimer-Tiemann Reaction,Jacobson reaction. 4.4 Synthesis of di & tri substituted – 1,2,3 tribromobenzene,2-methyl benzoic acid, 4-amino-2- hydroxybenzoic acid,p-formyl benzaldehyde,o-hydroxy anisole ,2-(4-isobutyl phenyl) propanoic acid (brufen). 4.5 Electrophilic substitution - Indole, quinoline, isoquinoline – orientation, reactivity – Comparative study of aromaticity and reactivity with pyrrole and pyridine. 	18	CO4
	 3.2 SN₁, SN₂ and SN_i, SN₁', SN₂' and tetrahedral mechanisms- reactivity, structural and Solvent effects, Neighboring group participation 3.3 Substitution in norbornyl and bridgehead systems – Bredts rule-substitution at allylic and vinylic carbons 		

5.2 Nucleophilic substitution involving diazonium ions. Aromatic Nucleophilic substitution of activated halides. Ziegler alkylation. Chichibabin reaction – reactions of 2, 4 DNB, FDNB.
5.3 Kinetic and Non-Kinetic methods of determining organic reactions mechanisms. Non-kinetic methods. Energy profile diagrams, intermediate versus transition state, identification of products, Cross-over experiments, Stereo chemical studies - uses of isotopes. Kinetic methods: kinetic isotopic effects, salt effects, solvent effects- solvent isotopic effects, kinetic and thermodynamic controlled products, Curtin-Hammett principle.
5.4 Linear free energy relationship - Hammett equation, Significance of substituent constant (sigma) and reaction constant (rho) for substituted benzoic acid. Taft equation, acidity of carboxylic acids and phenols, basicity of aliphatic and aromatic bases.

REFERENCES & TEXT BOOKS

- 1. Eliel E., Wilen S.H. and Mander L.N., Stereochemistry of Carbon Compounds, 2nd Edition, John Wiley & Sons, New York, 1994.
- 2. Nasipuri, Stereochemistry of Organic Compounds principles and applications, 3rd Edition, New age Publications Ltd., New Delhi, 2011.
- 3. Kalsi P.S., Stereochemistry Conformation and Mechanism, 6th Edition, New age Publications Ltd., New Delhi, 2005.
- 4. Kalsi. P.S., Stereochemistry and Mechanism through Solved Problems, 4th edition, New age Publications Ltd., New Delhi, 2006.
- Nimai Tewari, Advanced organic chemistry (problems and solutions), Books and Allied (P) Ltd., 2010.
- 6. Bruckner. R., Advanced Organic Chemistry, Reaction Mechanism, Elsevier, New Delhi, 2002
- Carey F. A., Sundberg R. J., Advanced Organic Chemistry, Part A and Part-B, 5th Edition, Plenum Press, New York, 2007.
- 8. March J. Advanced Organic Chemistry, 4th Edition, John Wiley & Sons, Singapore, 1992.
- 9. Gilchrist T.L. and Rees C.W., Carbenes, Nitrenes and Arynes, Thomas Nelson and Sons Ltd., London, 1969.
- 10. Gilchrist T. L. Heterocyclic Chemistry, 2nd Edition, Longman, Essex, England, 1992.

- 11. Joule J.A. and Mills K., Heterocyclic Chemistry, 4th Edn, Backwell Science Publishers, England, 2000.
- 12. Rajbir singh, Physical organic chemistry, Mittal publications, 2002.
- 13. Anslyn, E.V, Dougherty D.A., Modern physical organic chemistry, University science books, 2006.
- 14. Jonathan Clayden, Nick Greeves & Stuart Warren, Organic Chemistry, Second Edition, Oxford University press.

WEBSITES:

- 1. http://info.dome.sdsu,./research/guides/science/org chemistryblr.html
- 2. http://www.liv.ac.uk/chemistry/links/reactions.html
- 3. http://orgchem.chem..uconn.edu/namereact/named.html
- 4. <u>www.gcocities.com/</u> chempen softwar4ee/reactions.html

ASSESSMENT PATTERN

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

COURSE TITLE: CORE II – INORGANIC CHEMISTRY – I

Course Code	: 1923102	Credits	:04
L:T:P:S	: 6:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVE:

This course provides an ideal platform to explain the basic concepts on the structure, shape, bonding characteristics of simple inorganic compounds essentially comprising from p and d block elements that form clusters, rings, sheets, frameworks and cages. In addition to the structural aspects a basic introduction about the various theories pertaining to coordination complexes are dealt in detail focusing on the stereo and structural isomerism concepts in six and four coordinate metal complexes. Further, a wide application of the concept of bonding in organometallic chemistry and the application of these inorganic complexes as catalyst will be discussed in detail. **COURSE OUTCOMES:** At the end of the Course, the Student will be able

CO1	utilize the knowledge and usage of catalysts comprising isopoly and heretopolyacids for industrial applications. [K3]
CO2	correlate and compare the properties of carboranes with that of neutral, nido, closo, aracho, hypo and conjucto boranes. [K3]
СО3	predict the geometry, shape, coordination number, magnetic properties and stability of octahedral, square planar and tetrahedral complexes predominantly of d-block elements. [K3]
CO4	know the various donor systems donating sigma and pi bonds involved in the synthesis of organometallic compounds. [K3]
CO5	distinguish the concept of stereoisomerism from structural isomerism pertaining to six and four membered inorganic complexes. [K3]

CO/PO/PSO		РО								PSO					
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
C01	3	3	3	3	3	3	2	2	2	3	3	3	3	3	2
CO2	2	3	3	3	3	3	2	2	2	3	3	3	3	3	2
CO3	3	3	2	3	2	3	2	2	3	3	3	3	3	3	2
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. NO	CONTENTS OF MODULE	Hrs	COs
1	 STRUCTURE AND BONDING-I 1.1 Poly acids: Isopolyacids and heteropolyacids of transition metals- {[Xⁿ⁺M₁₂O₄₀]⁽⁸⁻ⁿ⁾⁻ (X= P, M= W)}, {[X₂⁵⁺M₁₈O₆₂]⁶⁻ ((X= P, M= W)}, [H₂(W₁₂O₄₀)]⁶⁻; H₃ PW₁₂O₄₀. 29 H₂O; ⁻ TeMo₆O₂₄⁶⁻; Mo₇O₂₄ ⁶⁻; PMo₁₂O₄₀ ³⁻; isopolyvanadates- polymerization of CrO₄²⁻ anion. 1.2 Inorganic Polymers: Silicates-Introduction, classification of silicates- ortho silicates (<i>Neso</i>) (Ex: zircon, willemite phenacite, forsterite, olivine, and garnets);pyro silicates (<i>soro</i>) (ex: thortveitite, hemimorphite);cyclo silicates (<i>meta</i>) (ex: wollastonite, benitoite, beryl and emerald); ino silicates (<i>chain</i>) (ex: amphiboles and asbestos minerals);sheet silicates (<i>phyllo</i>) (classification-clay minerals (ex: kaolinite, pyrophyllite, talc)-white asbestos (ex: chrysotile, biotite)- micas (ex: muscovite and margarite)-montmorillonite (ex: fuller's earth, bentonite and vermiculite)-three dimensional silicate (<i>tecto</i>) (classification-feldspars-zeolites-ultramarines)-formula, structure and properties only. 	17	CO1

	1.2 Delyongene shearborreness. Introduction structure of analis trivers		[]
	1.3 Polyorgano phosphazenes: Introduction-structure of cyclic trimer		
	(NPCl ₂) ₃ -pi bonding in phospho-nitrilic system-Craig and Paddock-		
	Dewar theory-structure and bonding of tetramer (NPCl ₂) ₄ and octa		
	methyl tetraphosphaza tetraene.		
	1.4 Linear polymers –phosphams-advantages of inorganic polymers.		
	Sulphur-nitrogen compounds: Preparation, properties and Structure:		
	$S_2N_2, S_4N_4, (SN)_x$		
	STRUCTURE AND BONDING II		
	2.1 Boranes: classification- closo, nido, arachno, hypo and conjucto.		
	Lipscomb's rule, Wade's rule- poly skeletal electron theory (PSEPT)-		
	calculation of number of electron deficient bonds in polyboranes.		
	Structure, bonding and determination of styx numbers and topology of		
	boron hydrides- Diborane, hexa hydrido hexaborane anion (B ₆ H ₆ ²⁻),		
	Tetraborane-10, Pentaborane-9, Pentaborane-11, Decaborane-14.		
	Carboranes: Structural similarity with boranes- Stability of closo, nido		
2	and arachno carboranes-Preparation, structure and isomerization of	18	CO2,
	$C_2B_{10}H_{12}$ (no mechanism)		CO3
	2.2 Metal Clusters: Definition- Clusters containing carbonyl groups-		
	electron count and structure of clusters-Wade Rule – Mingo's rule-		
	Chemistry of low molecularity metal clusters (up to) trinuclear metal		
	clusters; metal-metal multiple bonds. $(\text{Re}_2\text{Cl}_8^{2-}, \text{W}_2\text{Cl}_9^{3-}, [\text{Cr}_2\text{Cl}_2]^{3-},$		
	Re ₃ Cl ₉ , Cu ₂ and Cr ₂ acetate complexes, $Mo_2Cl_8^{4-}$ only),		
	Chalcogenides, Chevral phases. Octahedral clusters-metal only		
	clusters-structure and bonding only.		
	THEORIES OF COORDINATION COMPOUNDS		
	3.1 Crystal field theory (CFT)-d-orbital splitting (octahedral, tetrahedral,		
	square planar, square pyramidal and trigonal bipyramidal geometries).		
	Spectrochemical series- Ligand field stabilization energy -concept of		
	weak and strong fields (paramagnetic and diamagnetic property)-spin		
3	only magnetic moment (μ_s) .	17	CO4
U	3.2 Applications of CFT-origin of color of the transition metal complexes-	17	001
	magnetic property (magnetic moment) –applications of CFSE (crystal		
	structure of spinels, stabilization of oxidation states, and geometry of		
	complexes)-limitations of CFT- evidences for metal-ligand orbitals		
	overlap, nephelauxetic effect.		
	סיטרומף, ווכףווכומעגבווע בווכטו.		

[3.3 Molecular orbital theory and energy level diagram- octahedral		
	complexes- (sigma donor- pi donor-pi acceptor) and tetrahedral		
	complexes. Jahn-Teller distortion-theorem- static distortion- $t_{2g}^{3}e_{g}^{1}$,		
	$t_{2g}^{6}e_{g}^{3}, t_{2g}^{6}e_{g}^{1}, dynamic distortion- t_{2g}^{1}e_{g}^{0}, t_{2g}^{4}e_{g}^{2}$. Flattening-elongation		
	and consequences of Jahn-Teller distortion.		
	ORGANOMETALLIC CHEMISTRY		
	4.1 pi donors		
	Structure, bonding, modes- bonding mechanism-evidences for		
	bonding of CO, NO, alkenes, alkynes, cyclopenta diene, carbene, and		
	fluxional behavior. Metallocenes (general stability and reactivity)-		
	Preparation, properties, structure and bonding –ferrocene only.		
	4.2 Catalysis in Organometallic Chemistry		
4	Catalytic mechanism in the following reactions-Hydrogenation of	20	CO5
	olefins (Wilkinson's catalyst)-Tolman catalytic loops,		005
	hydroformylation (oxo process)-acetic acid from methanol-oxidation		
	of alkenes to aldehyde and ketones (Wacker process)-catalysis in the		
	formation of synthesis gas (syn gas)-homologation-water gas shift		
	reaction-synthetic gasoline (Fischer-Tropsch and Mobil process-		
	political process), olefins polymerization (Ziegler-Natta catalyst),		
	cyclo oligomerisation of acetylene using nickel catalyst (Reppe's		
	catalyst), polymer bound catalysts.		
	STEREO ISOMERISM OF COORDINATION COMPOUNDS		
	5.1. Stereochemical aspects- Stereoisomerism in Coordination		
	Complexes; Isomerism arising out of Ligands and Ligand		
	Conformation (bis complexes containing ethylene diamine, propylene		
5	diamine ligands- only).	18	CO6
	5.2. Chirality and Nomenclature of Chiral Complexes; Optical Rotatory		
	Dispersion (ORD) and Circular Dichroism (CD). Determination of		
	Absolute Configuration using ORD. $([Co(en)_3]^{3+}, Co(gly)_3]$		
	complexes only).		
	complexes omy).		

TEXT BOOKS:

- 1. J.E. Huheey, 1993, Inorganic Chemistry Principles, Structure and Reactivity; IV Edition, Harper Collins, NY.
- F.A. Cotton and G. Wilkinson, 1988, Advanced Inorganic Chemistry A Comprehensive Text, V. Edition, John Wiley & Sons.
- 3. K.F. Purcell and J.C. Kotz, 1977, Inorganic Chemistry WB Saunders Co., USA.
- 4. M.C. Day and J. Selbin, 1974, Theoretical Inorganic Chemistry, Van Nostrand Co. NY.
- 5. U. Malik, G.D.Tuli and R.DMadan 1992 Selected Topics in Inoganic chemistry,
- 6. A.F. Wells, 1984, Structural Inorganic Chemistry, V. Edition, Oxford
- Advanced Inorganic Chemistry Vol I and II by S. P. Banerjee. Books and Allied (P) Ltd. 2003.
- G. Coates, M. L. Green and K. Wade. Principle of Organo metallic chemistry, Methven Co., London 1988.
- 9. R. B. Jordan, Reaction mechanisms of Inorganic and Organo metallic systems, OUP, 1991.
- 10. A logical approach to Organometallic compounds by Mehotra and Singh.
- 11. Miessler, G. L. and Tarr, D. A. Inorganic Chemistry III Edition, 2004.

REFERENCE BOOKS:

- 1. D.F. Shrivers, P.W. Atkins and C.H. Langfor 1990, Inorganic Chemistry, CH Langford, OUP
- 2. Greenwood, N. N and Earnshaw, A. Chemistry of Elements. 2nd Edition 2014. Elsevier Publications.
- 3. S.F.A. Kettle, 1973, Coordination Chemistry, ELBS.
- 4. K. Burger, 1973, Coordination Chemistry, Burtterworthy.
- 5. R. Sarker, General & Inorganic Chemistry, 2005. Volume 1 and 2. New Central Book Agency (P) Limited,
- Douglas, McDaniel, Alexander, 1983, Concepts of models in Inorganic Chemistry John Wiley 2nd edition.
- 7. Gary Wulfsberg 2002 Inorganic Chemistry I edition.
- Asim K. Das Fundamental concepts of Inorganic Chemistry. 2008. Vol. 1-6. II Edition. (CBS Publications)

ASSESSMENT PATTERN

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Title: CORE PAPER III - PHYSICAL CHEMISTRY - I

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

Course Outcomes: At the end of the Course, the Student will be able to:

-

CO1	compare the thermodynamics of ideal and non-ideal solutions and gases
CO2	distinguish ideal and non-ideal solutions and the excess thermodynamic functions and apply the concept of activity and activity coefficient for non-ideal non-electrolytic solutions
СО3	explain the postulates of quantum mechanics. And they can demonstrate the application of Schrodinger wave equation for various systems such as particle in a box, particle on a ring and sphere etc. and identify the quantisation of energy in confined and microscopic systems
CO4	apply Schrodinger wave equation to quantum mechanical systems such as one dimensional harmonic oscillator and rigid rotor to deduce the expression for the energy which he can use in molecular spectroscopy. And also the application of Schrodinger wave equation to hydrogen atom and identify the radial and angular probability distribution functions to visualise and grasp the concept of various orbitals and their shapes
CO5	control and manipulate the complex reactions such as reversible, consecutive, parallel and chain reactions including explosion reactions. And also the Fast reactions such as explosions could be studied experimentally by the students using relaxation methods and flash photolysis

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO	РО									PSO			
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	2	2	1	2	2	3	2	3	2	3
CO2	3	3	3	2	2	1	2	2	3	2	3	2	3
CO3	3	3	3	2	3	2	2	2	3	3	3	3	3
CO4	3	3	3	2	3	2	3	3	3	3	3	3	2
CO5	3	3	3	2	3	2	3	3	3	3	3	3	2

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

Sl NO	CONTENTS OF MODULE	Hrs	COs
1	 Thermodynamics I 1.1 Partial molar properties - Partial molar free energy (Chemical potential) –Gibbs Duhem equation - Partial molar volume and partial molar heat content - their significance and determination of these quantities by method of intercepts. 1.2 Variation of chemical potential with temperature and pressure. 1.3 Thermodynamics of real gases - gas mixture – fugacity-definition - determination of fugacity - variation of fugacity with temperature and pressure. 	18	CO1
2	 Thermodynamics II 2.1 Thermodynamics of ideal and non ideal binary solutions - Duhem-Margules equation - application in the distillation of ideal and non ideal solutions - azeotropic mixture - dilute solutions - excess functions for non-ideal solutions and their determination. 2.2 Choice of standard states - Concept and determination of activity and activity coefficients for non-electrolytes. 	18	CO2
3	 Quantum Chemistry-I 3.1 Quantum mechanical postulates-the Schrodinger equation 3.2 Elementary applications of Schrodinger's equation-the particle in a box (one, two and three dimensional cases)-particle on a ring- particle on a sphere 	18	CO3
4	 Quantum Chemistry-II 4.1 One dimensional harmonic oscillator and isotropic oscillator- the rigid rotor- 4.2 The hydrogen atom - the Schrodinger equation for hydrogen atom - the solution - the origin of quantum number (angular momentum and spin) - their physical significance. 	18	CO4
5	 Chemical Kinetics-I 5.1 Kinetics of complex reactions - reversible reaction, consecutive reactions, parallel reactions, chain reactions - general treatment of chain reactions. Rice Herzfeld Mechanism and explosion limits. 5.2 Study of fast reactions-relaxation methods-temperature and pressure jump methods- stopped flow and flash photolysis. 	18	CO5

REFERENCE BOOKS:

- J.Rajaram & J.C.Kuriacose,1993, Kinetics and mechanism of chemical transformations, Mac Millon India Ltd.
- 2. K.J.Laidler, 1987, Chemical kinetics, Harper and Row, New York
- 3. P.W.Atkins, 1990, Physical Chemistry, Oxford
- 4. W.J.Moore, 1972, Physical Chemistry, Orient Longman, London
- 5. R.G.Frost and Pearson, 1981, Kinetics and mechanism, Wiley, New York
- 6. S.Glasstone, 1960, Thermodynamics for chemists, Affiliated East West Press, New Delhi
- 7. J.Rajaram & J.C.Kuriacose, 1986, Thermodynamics for students of chemistry, Lal Nagin
- 8. Chand, New Delhi
- 9. N. Levine, Quantum Chemistry, 6th edition.
- 10. Quantum Chemistry, Second Edition, Donald A. McQuarrie
- 11. Physical Chemistry: Robert G. Mortimer

ASSESSMENT PATTERN

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

SYLLABUS FOR SECOND SEMESTER

Course Code : 1923204	Credits : 04
L:T:P:S : 6:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

COURSE TITLE: CORE IV – ORGANIC CHEMISTRY - II

LEARNING OBJECTIVES:

On taking this course the student will be able to explain the basic concepts of addition reaction to carbon carbon multiple bond and elimination reaction. The student can classify and interpret mechanism of some of the important rearrangements in organic chemistry. The last part of the course will enable the student to describe the salient features of oxidation and reduction reactions in organic synthesis. (Stereochemical aspects to be studied wherever applicable)

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

CO1	Demonstrate the knowledge to understand and generate ideas about addition to carbon – carbon and carbon hetero multiple bond reactions. (K3)
CO2	Develop knowledge about reactions involving carbon –carbon and carbon hetero multiple bonds (K3)
CO3	Illustrate the basic principle and application of elimination reactions (K4)
CO4	Demonstrate the ability to distinguish between different types of molecular rearrangements and apply their importance in organic reaction mechanisms. (K4)
CO5	Assess various oxidation and reduction reactions and appreciate their importance in organic synthesis. (K4)

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO					Р	0							PSC)	
C0/F0/F50	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	3	2	2	2	3	2	2	2	3	3	3	3	3	2
CO2	3	3	2	2	2	3	2	2	2	3	3	3	3	3	2
CO3	3	3	3	2	2	3	2	3	2	3	3	3	2	3	2
CO4	3	3	3	2	2	3	2	2	2	3	3	3	2	3	2
CO5	3	3	3	3	2	3	3	3	2	3	3	3	2	3	2

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. NO	CONTENTS OF MODULE	Hrs	COs
1	 ADDITION TO CARBON-CARBON AND CARBON-HETERO ATOM MULTIPLE BONDS I 1.1 Addition of Halogen and halogen acids to multiple bonds – syn and anti addition. 1.2 Hydration of Olefins and acetylenes 1.3 Hydroboration – reaction with alkaline hydrogen peroxide – 1.4 Hydroxylation using OsO4, KMnO4 and alkaline hydrogen peroxide, peracids 1.5 Prevost and Woodward modifications 1.6 Michael Addition – dimethyl copper mediated addition-preparation of precursor for Robinson Annulation reaction – Regio chemistry. 	18	CO1
2	 ADDITION TO CARBON-CARBON AND CARBON-HETERO ATOM MULTIPLE BONDS II 2.1 Addition of carbenes and nitrenes -methods of generation and addition to double bonds, Simmon-Smith Reaction. 2.2 Diels Alder Reaction and 1, 3-dipolar additions - stereo electronic effects – use of Lewis acids, Alder's endo rule - Regio chemistry and retro Diels Alder reaction. 2.3 Mannich reaction, Stobbe and Darzen reactions - Knovenegal condensation, Benzoin condensation. 2.4 Ylides - N, O, S - Phosphorous ylides - Wittig reaction - mechanism and applications; S-ylides- Jacobson–Corey– Chaykovsky reaction -Difference in the reactivity of P and S ylides with carbonyl compounds. 2.5 Difference in the reactivity of dimethyl- and dimethoxysulphoniummethylides with à,β- unsaturated carbonyl compounds, cyclohexanones and norbornyl systems(exo- and endo- additions) 	18	CO2
3	ELIMINATION REACTIONS 3.1 Types - E ₁ , E ₂ , Ei and E ₁ cB mechanism –Factors influencing the eliminations – substitution/elimination ratio- E ₁ /E ₂ ratio-Orientation of the double bond -Hoffman and Saytzeff rule -	18	CO3

	Factors influencing Hoffman and Saytzeff products- syn and anti		
	elimination with examples. E1, E2 and E1cB spectrum,		
	MoreO'Ferral diagram		
	3.2 Competition between elimination and substitution, orientation		
	of product formation, Stereochemistry of E2 eliminations in		
	cyclohexane systems.		
	3.3 Typical eliminations to be studied - dehydration, dehydro-		
	halogenation – dehalogenation-		
	3.4 Mechanism of pyrolytic eliminations. Examples: Chugaev and		
	Cope Elimination.		
	MOLECULAR REARRANGEMENTS		
	4.1 Classification of molecular rearrangements based on migrating		
	centre.		
	I. Nucleophilic Rearrangement (Anionotropic/Carbonium ion		
	Rearrangement)		
	II. Electrophilic rearrangement Cationotropic/Carbanion		
	Rearrangement)		
	4.2 Rearrangements involving migration to electron-deficient carbon		
4	Demjanov Rearrangement, dienone-phenol, Benzil - Benzilic acid	18	CO4
_	Rearrangement Wolff Rearrangement		
	4.3 Rearrangements involving migration to electron rich carbon:		
	Favorskii Rearrangement, Neber Rearrangement, Stevens, Wittig,		
	Sommelet		
	4.4 Rearrangements involving migration to electron deficient		
	nitrogen: Beckmann Rearrangement		
	4.5 Rearrangements involving migration to electron deficient oxygen:		
	Baeyer-Villiger Rearrangement, Dakin, Fries, Claisen, Benzidine		
	OXIDATION AND REDUCTION		
	5.1. Mechanism and study of the following oxidation reactions:		
	Oxidation of alcohols - using Chromium based reagents - PCC,		
	PDC, Jones reagent – Mechanism of oxidation of alcohols using		
5	DMSO activated with electrophiles such as DCC, oxalyl chloride,	18	CO5
	acetic anhydride & SO ₃ - Pfitzner Moffatt and Swern oxidation –		
	Sharpless Epoxidation using peracids-hydroxylation of olefins		
	using OsO ₄ (both cis and trans), cleavage of 1,2-glycols using		
	using 0504 (both ers and trans), creavage of 1,2-grycols using		

periodate, lead tetra acetate- Ozonolysis.	
5.2. Allylic oxidation of olefins using SeO ₂ - oxidation of r	nethylene
to carbonyl (Riley reaction) -oxidation of aryl methan	nes (Etard
reaction)	
5.3. Synthetic importance of Clemmensen and Wol	f-Kishner
reductions- Modifications of Wolf-Kishner reduct	ion-Birch
reduction, MPV reduction. Reduction with NaBH4,	LiAlH ₄ ,
Li(tBuO) ₃ , AlH ₃ , DIBAL-H, Selectivity in reduction of	4-t-butyl
cyclohexanone using selectrides	

TEXTBOOKS:

- 1. Bruckner R. Advanced Organic Chemistry, Reaction Mechanism, Elsevier, New Delhi, 2002.
- 2. Carey F.A. and Sundberg R.J., Advanced Organic Chemistry, Part A and Part-B, 4th Edition, Plenum Press., New York, 2001.
- 3. March J., Advanced Organic Chemistry, 4th Edition, John Wiley & Sons Singapore, 2002.

REFERENCE BOOKS:

- 1. Gilchrist T.L. and Rees C.W., Carbenes, Nitrenes and Arynes, Thomas Nelson and Sons Ltd., London, 1969.
- 2. Carruthers W., Some Modern Methods of Organic Synthesis, 3rd Edition Cambridge University Press, 1993
- 3. House H.O., Modern Synthetic Reactions, The Benjamin Cummings Publishing Company, London, 1972.
- 4. March J. and Smith M.B., March's Advanced Organic Chemistry: Reactions, Mechanisms and structure, 6th edition, Wiley, 2007.
- 5. Jonathan Clayden, Nick Greeves & Stuart Warren, Organic Chemistry, Second Edition, Oxford University press, 2012.

WEBSITES:

- 1. http://info.dome.sdsu,./research/guides/science/org chemistryblr. Html
- 2. http://www.liv.ac.uk/chemistry/links/reactions.html
- 3. http://orgchem.chem..uconn.edu/namereact/named.html
- 4. <u>www.gcocities.com/</u> chempen softwar4ee/reactions.html

ASSESSMENT PATTERN

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code : 1923205	Credits	: 04
L:T:P:S : 6:0:0:0	CIA Marks	: 40
Exam Hours : 03	ESE Marks	: 60

COURSE TITLE: CORE V – INORGANIC CHEMISTRY – II

LEARNING OBJECTIVE:

This paper explains the basic concepts of the role of elements involved in the active metabolism of human kind. The role of essential, trace and need of elements in the biomineralisation, transportation, storage with respect to Fe, Cu, and Zn is provided in detail in order to understand the essence and role of elements in our daily life as enzymes or cofactors. A broad picture on the role of elements involved in electron transfer, energy transfer and photosynthesis is provided. The concept and idea of Solid state chemistry and its application in material chemistry is explained as illustrative concepts linked to semiconductors, solid state lasers, phosphors, superconductors, alloys and solid melt solutions. A conceptual idea and a fundamental aspect on the electronic spectroscopy on the study of the inner core electrons is provided in the form of photoelectron spectroscopy which is explained with examples ranging from simple homonuclear and heteronuclear molecules.

COURSE OUTCOMES: At the end of the Course, the Student will be able

CO1	To assess the role of metal ions, metallo enzymes and Vitamins in human body and other living organisms (K3, K5)
CO2	To illustrate the role of transport proteins, study of photosynthesis, nitrogen fixation and anti cancer activity (K4)
CO3	Interpret of XPES, UPES and evaluation of ionisation potential and chemical identification of elements. (K3)
CO4	To determine the effect of Magnetic Behavior, magnetic susceptibility and its applications (K3)
CO5	To examine the related applications of X-Ray, Neutron and Electron Diffraction, and solid electrolytes and solid solutions (K4)

PSO PO CO/PO/PSO **CO1** CO2 **CO3 CO4 CO5**

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. NO	CONTENTS OF MODULE		COs
1	 BIO INORGANIC CHEMISTRY-I 1.1 Iron proteins involved in transport and storage of iron-ferritin-bio mineralization-structural features -apoferritin-structural features-hemosiderin-transferrin-role of synergistic anion ligand (carbonate)-stability of Fe (III) chelate. 1.2 Iron transport in lower organisms-siderophores-definition-iron binding groups-classification. 1.3 Sodium and potassium pump-transport processes- role of Mg²⁺ ions-conformational states E1 and E2-selectivity of the pump. 1.4 Bio elements and their classification in human body-bio elements and their role in human body-Na, K, Mg, Ca, P, Fe, Cu, Zn, I, F, Co, Mn-role of coordination complexes in living body. 1.5 Metallo enzymes – apo enzymes-co enzymes-co factor-zinc enzymes – structure, function and mechanism of carboxy peptidase A (CPA) and carbonic anhydrase (CA). 1.6 Vitamin B₁₂- unusual aspects of cobalamine- chemistry of cobalmine- oxidation state of Cobalt in cobalmine- electrophilic and nucleophilic character of coblamine- properties of Co-C bonds in cobalamine in terms of bond fission-special characteristics of vitamin B₁₂ coenzyme. 	15	CO1

	1.7 Function and structural features of Catalase and peroxidase.		
	Copper proteins: Classification-Type I- structural differences-		
	plastocyanin- stellacyanin-azurin. Type II, Type III-its biological		
	role.		
	BIO INORGANIC CHEMISTRY-I I		
	2.1 Transport proteins, Oxygen carriers – haemoglobin – myoglobin –		
	structure, co-operativity and Bohr effect- Perutz mechanism-role		
	of protein-Picket-Fence model. Biological redox systems:		
	Cytochromes – structure and classification. Cytochrome P450-		
	structural features-functions and mechanism of activity.		
	2.2 Iron sulphur proteins – general features of Fe-S proteins-		
	Rubredoxin – Ferredoxin (Fd)-4Fe-4S (Fd), Rieske centre-2Fe-2s		
	(Fd), 3Fe-4S (Fd), 8Fe-8S (Fd).		
	2.3 Chlorophylls and Photosynthesis-light phase and dark phase		
2	reactions in photosynthesis-chlorophyll-structural features-role of	20	CO2
	Mg ²⁺ in chlorophyll-electron transport chain in light phase		
	reactions of photosynthesis Z-scheme-water splitting reaction		
	catalysed by Mn-protein in photosynthesis.		
	2.4 Nitrogen fixation - introduction, nitrification and de-nitrification-		
	fundamental features-in vitro nitrogen fixation-in vivo nitrogen		
	fixation-structural features-Fe protein-Fe Mo cofactor.		
	2.5 Anti cancer activity of Platinum complexes, Mechanism of		
	anticancer activity of cis-DDP, non-activity of trans-DDP. Only		
	examples of anticancer metal complexes (other than Pt-		
	complexes). Radio isotopes – diagnosis and treatment.		
	PHOTO ELECTRON SPECTROSCOPY		
	3.1 Theory of X-ray Photo Electron Spectroscopy (XPES), Ultra		
	Violet Photo Electron Spectroscopy (UVPES)-evaluation of		
	ionisation potential-chemical identification of elements.		
	3.2 Electronic spectra for chemical analysis (ESCA)- Koopman's		
3	theorem-chemical shift-UPES of ammonia, molecular nitrogen,	15	CO3
	molecular oxygen, carbon monoxide, water and hydrogen		
	chloride. Hydrogen molecule, magnesium oxide, ethyl		
	trifluoroacetate and nitrosonium ion.		
	3.3 Vibrational fine structure and their origin-evaluation of vibrational		
	constants from UPES-spin-spin coupling-spin orbit coupling.		
	SOLID STATE CHEMISTRY – I	•	004
4	4.1 Types of Magnetic Behaviour - Diamagnetism, Paramagnetism,	20	CO4
	Ferromagnetism, Anti-ferromagnetism and Ferrimagnetism.		

	 effective magnetic moment (μ_{eff})- determination of μ_{eff} - comparison of Co²⁺ and Ni²⁺ octahedral and tetrahedral complexes. Hysterisis (hard magnets and soft magnets). 4.2 Magnetic susceptibility-Determination of magnetic susceptibility by Guoy method and Faraday methods-applications of magnetic susceptibility. 4.3 Spinels and inverse spinels (Problems). Solid State Lasers-ruby laser-Nd lasers, Inorganic Phosphors and Garnets. SOLID STATE CHEMISTRY –II 		
5	 5.1. Comparison of X-Ray, Neutron and Electron Diffraction- applications. 5.2. Superconductors - BCS theory, Cooper pairs. 5.3. Solid electrolytes-beta alumina-AgI and Ag⁺ ion solid electrolytes-halide ion conductors-oxide ion conductors- applications of solid electrolytes. Reactions in Solid State- Diffusion Coefficient, Diffusion Mechanisms, Vacancy and Interstitial Diffusion. 5.4. Solid Solutions: substitutional solid solutions-interstitial solid solutions. Phase transitions-reconstructive and displacive transitions-thermodynamic classification of phase transitions. 5.5. Crystal chemistry and phase transitions-Martensitic transformations-order disorder transitions- Super Structure. 	20	CO5

TEXT BOOKS:

- 1. K.F. Purcell and J.C. Kotz, 1977, Inorganic Chemistry WB Saunders Co., U.S.A.
- 2. J.E. Huheey, 1993, Inorganic Chemistry, IV Edition, Harper and Collins, NY.
- F.A. Cotton and G.W. Wilkinson, 1988, Advanced Inorganic Chemistry A Comprehensive Text; John Wiley & Sons.
- 4. B.E. Dogulas. D Mc Daniels and Alexander, 1983, Concepts and Models of Inorganic Chemistry, Oxford IBH.
- 5. A.R. West, 1991, Basic Solid State Chemistry, John Wiley.
- 6. W.E. Addison, 1961, Structural Principles in Inorganic Chemistry, Longman.
- 7. M. Adams, 1974, Inorganic Solids, John Wiley Sons.
- 8. K.Hussain, Reddy Bio Inorganic Chemistry, New Age International Pvt., Ltd.,
- 9. Williams D.R., Introduction to Bio Inorganic Chemistry

- 10. Fiabre F.M. and Williams D.R The Principles of Bio Inorganic Chemistry Royal Society of Chemistry Monograph for teachers.
- 11. G. N. Mugherjee and Arabinda Das 1993. Elements of Bio Inorganic Chemistry.
- 12. M. Satake and Y. Mido -1996 Bio Inorganic Chemistry Discovery publishing House New Delhi.
- 13. Asim K Das-2011 Bio Inorganic Chemistry Books and Allied Private Ltd.
- 14. Advanced Inorganic Chemistry Vol I and II by S. P. Banerjee. Books and Allied (P) Ltd. 2003.
- 15. E. A. V. Ebsworth, D.W.H. Rankin and S. Cradock, Structural Methods in Inorganic Chemistry, Blackwell Scientific Publ., 1976.
- Basic Organometallic Chemistry: Concepts, Syntheses and Applications 2nd Edition, by B.
 D. Gupta and A. J. Elias, University Press.

REFERENCE BOOKS:

- 1. S.F.A. Kettle, 1973, Coordination Chemistry, ELBS.
- 2. B.N. Figgis, 1966, Introduction to Ligand Fields, Interscience.
- M.N. Hughes, 1982, The Inorganic Chemistry of Biological processes, II Edition, Wiley London
- 4. M.C. Shrivers, P W. Atkins, CH Langford, 1990, Inorganic Chemistry, OUR
- 5. M.C. Day and J. Selbin, 1974, Theoretical Inroganic Chemistry, Van Nostrand Co., NY.
- 6. A.F. Wells, 1984, Structural Inorganic Chemistry, V. Edition, Oxford
- 7. A.R. West, 1990, Solid State Chemistry, John Wiley.
- 8. K. Burger, 1973, Coordination Chemistry, Experimental methods, Butterworths.
- 9. C.N.R. Rao, J.R. Ferraro, 1970, Spectroscopy in Inorganic Chemistry, Vol. I and Vol. II, Academic Press.
- 10. G. Aruldas, Molecular Structure and Spectroscopy, Prentice Hall.
- 11. G.Eicharn, 1973 Inorganic Bio Chemistry volume I &II Elsevier
- 12. Bertini, Gray, Lippard, Valentine –1998 Bio Inorganic Chemistry South, Asian Edition

ASSESSMENT PATTERN

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code : 1923206	Credits : 04
L:T:P:S : 6:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

COURSE TITLE: CORE VI - PHYSICAL CHEMISTRY – II

LEARNING OBJECTIVE:

To learn the fundamentals and applications of Group theory in chemistry and approximation methods of quantum chemistry, reactions in solutions, enzyme catalysis and theories of adsorption. COURSE OUTCOMES: At the end of the Course, the Student will be able:

CO1	To paraphrase the fundamentals and applications of Group theory. [K2]
CO2	To articulate group theory to molecules and predict IR and electronic spectra. [K3]
CO3	To compute approximation methods to the atoms of more than one electron. [K3]
CO4	To predict the effect of temperature on the rate of reaction. [K2]
CO5	To employ enzyme catalysis and adsorption for practical situations.[K3]

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО											PSO			
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	
CO1	3	3	3	3	3	3	2	2	2	3	3	3	3	3	2	
CO2	2	3	3	3	3	3	2	2	2	3	3	3	3	3	2	
CO3	3	3	2	3	2	3	2	2	3	3	3	3	3	3	2	
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	
CO5	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	
STRONGLY	CORI	RELA	TED	-3,	MO	DER	ATE	LY	COR	RELA	ATEI) _	2, V	VEAF	KLY	

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. NO	CONTENTS OF MODULE	Hrs	COs
	GROUP THEORY IN CHEMISTRY-I		
	1.8 Definition of group - Symmetry elements and symmetry		
1	operations	10	CO1
1	1.9 Point groups-identification and determination-reducible and	18	CO1
	irreducible representations Direct product representation		
	1.10 Orthogonality theorem and its consequences-character table		
	GROUP THEORY IN CHEMISTRY-I I		
	2.1 Hybrid orbital in non-linear molecules (CH4, XeF4, BF3, SF6		
	and NH3).		
	2.2 Determination of representations of vibrational modes in non-		
	linear molecules (H2O, CH4, XeF4, BF3, SF6 and NH3)	10	~~~
2	2.3 Symmetry selection rules for infrared, Raman and electronic	18	CO2
	Spectra-Mutual exclusion principle		
	2.4 Electronic Spectra of Ethylene and formaldehyde-SALC		
	method of constructing MOs of water, ammonia,		
	cyclobutadiene and benzene		
	QUANTUM CHEMISTRY-III		
	3.1 Approximation methods: Variation method- application to		
	Particle in one dimensional box, hydrogen atom, helium atom		
	3.2 Time independent Perturbation method- Application to Particle		
	in one dimensional box, anharmonic oscillator, hydrogen atom		
3	(stark effect) and helium atom	18	CO3
	3.3 Time dependent perturbation theory – Selection rules for		
	transitions.		
	3.4 Pauli principle, Spin function, Anti-symmetric wavefunction –		
	Slater determinants, Slater orbital and HF-SCF methods. R. S.		
	Coupling and term symbols for atoms in the ground state		
	CHEMICALKINETICS-II		
	4.1 Transition state theory		
4	4.2 Reactions in solutions, effect of pressure, dielectric constant and	10	
4	ionic strength on reactions in solutions	18	CO4
	4.3 Kinetic isotope effects-linear free energy relationships-Hammett		
	and Taft equations.		

	4.4 Acid base catalysis-Bronsted catalysis law		
5	 CHEMICALKINETICS-III 5.1. Catalysis by Enzymes: Rate of enzyme catalyzed reactions, effect of substrate concentration, pH and temperature on enzyme catalyzed reactions-inhibition of enzyme catalyzed reactions. 5.2. Adsorption: Langmuir and BET adsorption isotherms- 	18	CO5
	adsorption coefficient and its significance 5.3. Kinetics and mechanism of surface reactions-catalysis by metals, semiconductor oxides.		

REFERENCE BOOK:

- 1. J.Rajaram & J.C.Kuriacose, 1993, Kinetics and mechanism of chemical transformations, Mac Millon India Ltd.
- 2. K.J.Laidler, 1987, Chemical kinetics, Harper and Row, New York
- 3. P.W.Atkins, 1990, Physical Chemistry, Oxford
- 4. W.J.Moore, 1972, Physical Chemistry, Orient Longman, London
- 5. R.G.Frost and Pearson,1981, Kinetics and mechanism, Wiley, New York Chand, New Delhi
- K.V.Raman, 1990, Group Theory and its applications to chemistry, Tata Mc.Graw Hill 7. F.A.Cotton, 1971, Chemical applications of Group Theory, John Wiley and Sons Inc., New York
- 7. S. Swarnalakshmi, T. Saroja and R. M. Ezhilarasi, 2008, A simple approach to Group theory in chemistry, University Press
- 8. N. Levine, Quantum Chemistry, 6th edition.
- 9. Quantum Chemistry, Second Edition, Donald A. McQuarrie 13. Physical Chemistry: Robert G. Mortimer.

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

COURSE TITLE: CORE VII - ORGANIC CHEMISTRY PRACTICALS I

Course Code : 1923207	Credits	: 04
L:T:P:S : 0:0:6:0	CIA Marks	: 40
Exam Hours : 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course, the students will be able to

I. Analyse and separate organic mixture and Identify the components in a two-component mixture and prepare derivatives and determine the melting point of individual components.

II Apply the lab techniques in analysis of organic compounds.

III. Prepare simple organic compounds involving one and two stages and determine their yield.

COURSE OUTCOMES:

At the end of the Course, the Student will be able to:

CO1	Demonstrate the knowledge to separate a given binary or tertiary organic mixture and analyse the compounds present in it. (K3)
CO2	Design and proceed with single stage and two stage preparation of organic compounds employing the principles which they learnt in the theory during this year of study.(K3)
CO3	Apply the principles of green synthesis and prepare simple organic compounds (K4)

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО										PSO				
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	
CO1	3	3	2	3	2	3	2	3	2	3	3	3	3	3	3	
CO2	3	3	2	3	2	3	2	2	2	3	3	3	3	3	3	
CO3	3	3	2	3	2	3	2	2	3	3	3	3	3	3	3	

S. No.	CONTENTS OF MODULE	COs						
	Preparation involving single step:							
	1. 1, 2, 3, 4-Tetrahydrocarbozole from cyclohexanone							
	2. p-chlorotoluene from p-toluidine							
	3. Preparation of dibenzylideneacetone from benzaldehyde							
1.	4. Preparation of benzylidene acetophenone from benzaldehyde	CO1						
	(Chalcone)							
	5. Reduction - Benzhydrol from benzophenone							
	6. Pinacol-Pinacolone rearrangement from Pinacol hydrate							
	7. 7. Fischer Indole synthesis from cyclohexanone							
	Preparations from the following involving two stages:							
	1. 2, 4-Dinitrobenzoic acid from p-nitro toluene. (Oxidation							
2	/Aromatic electrophilic substitution)	CO2						
2.	2. 2-4, Dinitrophenyl hydrazine from p-nitrochlorobenzene.	02						
	(Aromatic electrophilic and Nucleophilic substitution)							
	3. Preparation of Acetanilide from Acetophenone							
3.	Green synthesis	CO3						
э.	*Bromination of acetanilide using ceric ammonium nitrate.	003						

*Not for exam

RERERENCES:

- 1. Arthur I. Vogel A Text Book of Practical Organic Chemistry
- 2. Raj . K. Bansal, Laboratory Manual of Organic Chemistry, Wiley Eastern Limited.
- 3. Mann & Saunders, Laboratory Manual of Organic Chemistry.

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

Course Code : 1923208	Credits : 04
L:T:P:S : 6:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

COURSE TITLE: CORE VIII - INORGANIC CHEMISTRY PRACTICALS I

LEARNING OBJECTIVES:

This comprises of TWO parts

I. Analysis of inorganic mixture. The course is designed to enable students to have an exposure to lab techniques in analysis of inorganic compounds containing a combination of rare and common cations. The concept of solubility product, common ion effect and the role of oxidizing and reducing agents in determination of two common actions and two less common actions is provided through semi micro qualitative analysis.

II. Estimation of Mg, Zn and Ca using EDTA by complexometric titration and estimation of *Fe by Cerimetry.*

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

CO1	To provide an insight into the role of EDTA in complexometric titrations and its significance in the quantitative estimation of Ca, Mg and Zn.
CO2	This technique enables the student to carry out an idea about the technique and mechanism of determination of the presence of dissolved metal salts in water.
CO3	Industrial application of the analysis of water is imparted to the students to excel in industrial and research labs
CO4	The students are taught with the technique and elementary idea of detection of metals as common and rare cations in a mixture.
CO5	The students are able to qualitatively identify several cations based on the knowledge of solubility product, ionic product and precipitating agents.
CO6	Identification of metals using spot reagents is of analytical importance to the students who can apply these techniques in food processing labs and dairy products.

CO/PO/PSO					Р	0	PSO									
0/10/150	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	
CO1	3	3	3	3	2	3	2	2	2	3	3	3	3	3	2	
CO2	3	3	2	3	2	3	2	2	2	3	3	3	3	3	2	
CO3	3	3	3	3	2	3	2	3	2	3	3	3	2	3	2	
CO4	3	3	2	2	2	3	2	2	2	3	3	3	2	3	2	
CO5	3	3	2	3	2	3	2	2	2	3	3	3	3	3	2	
CO6	3	3	3	3	2	3	2	3	2	3	3	3	2	3	2	

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. NO	CONTENTS OF MODULE	COs
1	Semi micro qualitative analysis of mixtures containing two common and two rare cations. The following are the rare cations to be included: W, Mo, Ti, Te, Se, Ce, Th, Zr, V, U and Li.	CO1, CO2, CO3, CO4
2	Volumetric estimations 1. Complexometric titrations (EDTA) – Estimation of Ca, Mg and Zn 2. Cerimetry – Estimation of iron using ferroin indicator	CO5, CO6

TEXT BOOKS:

- 1. Vogel, Text book of Inorganic quantitative analysis.
- 2. Dougles A. Skoog, Principles of Instrumental Analysis, 3rd Edition.
- 3. Inorganic semimicro qualitative analysis, V.V. Ramanujam, The National publishing company, Ed:3,2007

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

ELECTIVE I COURSE TITLE: PHYSICAL CHEMISTRY PRACTICALS I

Course Code : 1923209	Credits : 03
L:T:P:S : 6:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

LEARNING OBJECTIVES:

To understand and verify the concepts and equations in physical chemistry by carrying out the following suitable experiments.

COURSE OUTCOMES: At the end of the Course, the Student will be able to

CO 1	To verify the isotherm equation. (exp.1)
CO 2	To interpret the various phases in binary and ternary system. (exp 2,3,4)
CO 3	To determine the equilibrium constant, concentration, molecular weight by partition method. (exp 5,6,7)
CO 4	To assess the zero, first, second order kinetics of the reaction volumetrically(exp 8,9,11,13,17)
CO 5	To assess the first order kinetics of the reaction conductometrically (exp 10,12)
CO 6	To understand partial molar properties in binary mixture (exp 15,16)
CO 7	To determine the specific rotation and concentration of the non -electrolyte polarimetrically.(exp 18.19)
CO 8	To verify the Bronsted Bjerum equation or effect of salt in kinetics of the reaction. (exp 17, 20)

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO					J	20	PSO								
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	3	3	3	2	3	2	2	2	3	3	3	3	3	2
CO2	3	3	2	3	2	3	2	2	2	3	3	3	3	3	2

CO3	3	3	3	3	2	3	2	3	2	3	3	3	2	3	2
CO4	3	3	2	2	2	3	2	2	2	3	3	3	2	3	2
CO5	3	3	2	3	2	3	3	3	2	3	3	3	2	3	2
CO6	3	3	2	2	2	3	2	2	2	3	3	3	2	3	2
C07	3	3	2	3	2	3	3	3	2	3	3	3	2	3	2
CO8	3	3	2	3	2	3	3	3	2	3	3	3	2	3	2

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. NO	LIST OF EXPERIMENTS	COs
1	Study of the adsorption of acetic acid or oxalic acid on charcoal, verification of Freundlich Isotherm and determination of concentration of given acetic acid or oxalic acid.	CO1
2	Construction of phase diagram for a simple binary system forming Eutectic mixture;naphthalene – biphenyl, naphthalene –p-dichlorobenzene, naphthalene-diphenylamine.	CO2
3	Construction of phase diagram for a simple binary system forming Compound.	CO2
4	Construction of phase diagram for the three component system (partially miscible liquid system) Chloroform –aceticacid – water. Construction of phase diagram of Nicotine –water system.	CO2
5	Determination of the equilibrium constant of the reaction between iodine and potassium iodide by partion method.	CO3
6	Determination of the concentration of given potassium iodide solution by partition method.	CO3
7	Determination of molecular weight of benzoic acid in benzene and the degree of association of benzoic acid in benzene using partition method.	CO3
8	Kinetic study and comparison of rate constant for the inversion of cane sugar in presence of acid using polarimeter.	CO4
9	Kinetic study of the reaction between acetone and iodine in acidic medium and determination of the order with respect to iodine and acetone.	CO4

10	Kinetic study of saponification of ethylacetate by sodium hydroxide conductometrically and determination of order of the reaction.	CO5
11	Kinetic study and comparison of acid strengths using acid catalysed hydrolysis of methyl acetate.	CO4
12	Determination of temperature coefficient and energy of activation for the acid catalysed hydrolysis of methylacetate.	CO5
13	Determination of the rate constant and order for the reaction between potassium persulphate and potassium iodide	CO4
14	Study of the primary salt effect on the kinetics of oxidation of iodide by persulphate.	
15	Determination of partial molar volume of a binary solvent mixture.	CO6
16	Study of variation of viscosity of a binary solvent mixture.	CO6
17	Kinetic study and effect of solvent on acid catalysed hydrolysis of methyl acetate.	CO8
18	Determine the specific rotation of camphor in benzene and carbon tetrachloride by polarimetry.	CO7
19	To Determine the percentage of two optically active substances (d-glucose & d tartaric acid) in a mixture polarimetrically	CO7
20	Study the effect of addition of an electrolyte on solubility of an organic acid	CO8
T / A	minimum of 10, 12 our oning on to have to he more farmed	

Note: A minimum of 10 - 12 experiments have to be performed.

REFERENCE BOOK:

- 1. Physical Chemistry Laboratory manual Branch IV Chemistry compiled by Dr. B. Viswanathan
- Dr. V. R. Vijayaraghavan, Dr. T. Sundaravelu, Dr. Kamala Govindarajan, Dr.S. Vivekanandn and Dr. V. Kannappan Centre for Science Education School of Chemistry, University of Madras
- 3. Findley's practical physical chemistry, 9th edition, revised by B.P.Levitt
- 4. Experiments in physical chemistry, carl garland, Joshep Niber, David shoemaker
- Physical Chemistry Practical Manual I compiled by Dr. S. Bangaru Sudarsan Alwar, Dr.
 C. Srinivasan, Mr. R. Ramesh Kumar and Mr. V. Rajagopalan, P.G. & Research Department of Chemistry, D. G. Vaishnav College, Arumbakkam, Chennai 600106.

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

ELECTIVE PAPER I

COURSE TITLE : ADVANCED QUANTUM MECHANICS FOR COMPUTAIONAL CHEMISTRY

Course Code :	Credits : 03
L:T:P:S : 6:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

LEARNING OBJECTIVE:

To learn the advances in quantum mechanics like slater determinants, Hartee Fock approximation, Configuration Interaction, Pair and Coupled-Pair Theories and Many-Body Perturbation Theory. COURSE OUTCOMES: At the end of the Course, the Student will be able:

CO1	To paraphrase the many electron wave functions, spin orbitals and spatial orbitals. [K4]
CO2	To articulate quantum mechanics to the Coulomb and exchange operators, –the Fock Operator. [K4]
CO3	To compute approximation methods to truncated configurational interactions and the Size-Consistency Problem. [K3]
CO4	To predict the Coupled – Pair Theories and Many – Electron Theories with Single particle Hamiltonians [K3]
CO5	To illustrate Rayleigh-Schrodinger Perturbation theory and Orbital perturbation theory [K2]

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО											PSO			
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	
C01	3	3	3	3	3	3	2	2	2	3	3	3	3	3	2	
CO2	2	3	3	3	3	3	2	2	2	3	3	3	3	3	2	
CO3	3	3	2	3	2	3	2	2	3	3	3	3	3	3	2	
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	
CO5	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	
STRONGLY	CORI	REL A	TFD	-3	MO	DER	ATE	LV (COR	REL	TFI) _	2 V	VEAF		

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. NO	CONTENTS OF MODULE	Hrs	COs
1	 UNIT -1: MANY ELECTRON WAVE FUNCTIONS: 1.1 – The electronic problem: Atomic units – The Born- Oppenheimer Approximations – The Antisymmetry or Pauli Exclusions Principle 1.2 – Orbitals, Slater Determinants and Basis Functions: Spin Orbitals and Spatial orbitals - Hartree Products – Slater determinants – Hartree Fock approximation – The Minimal Basis H₂ model – Excited Determinants 	18	CO1
2	 UNIT -2: THE HARTREE-FOCK APPROXIMATION 2.1 – The Hartree-Fock Equations: The Coulomb and Exchange Operators – The Fock Operator 2.2 – Restricted Closed – Shell HF: The Roothan Equations\ Model Calculations on H2 and HeH⁺ - Polyatomic basis Sets 2.3 – Unrestricted Open – Shell Hartree – Fock 	18	CO2
3	 UNIT -3: CONFIGURATION INTERACTION 3.1. – Multiconfigurational wave functions and the structure of the Full CI Matrix 3.2 – Doubly excited CI 3.3 – The Multiconfiguration Self- Consistent Field and Generalized Valence Bond Methods 3.4 – Truncated CI and the Size-Consistency Problem 	18	CO3
4	 UNIT -4: PAIR AND COUPLED-PAIR THEORIES 4.1 – The Independent Electron pair Approximation 4.2 - Coupled – Pair Theories 4.3 – Many – Electron Theories with Single particle Hamiltonians 	18	CO4
5	 UNIT -5: MANY-BODY PERTURBATION THEORY 5.1 – Rayleigh-Schrodinger Perturbation theory 5.2 – Orbital perturbation theory 5.3 – Perturbation Expansion of the Correlation Energy 5.4 – Diagrammatic representation of the perturbation expansion of the Correlation Energy 	18	CO5

SUGGESTED REFERENCE BOOKS:

- 1. N. Levine, Quantum Chemistry, 6th edition.
- 2. Quantum Chemistry, Second Edition, Donald A. McQuarrie 13. Physical Chemistry: Robert G. Mortimer.
 - 3. Quantum Chemistry, Second Edition, Donald A. McQuarrie

ASSESSMENT PATTERN

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

ADVANCED COURSE I

Course Code : 1923210	Credits : 03
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

COURSE TITLE: ANALYTICAL CHEMISTRY PRACTICALS I

LEARNING OBJECTIVE:

This course aims to demonstrate the basic analytical concepts involving instrumentation with the aid of appropriate experimental procedure. In addition, this course also focuses on the quantitative determination of samples under investigation and makes use of statistical tools to assess the precision and accuracy of the entities in detail.

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

CO1	Prepare solution of any sort of the commonly used parameters. Molarity, molality, normality, w/v, v/v, ppm and ppb.
CO2	Analyze based on the statistical tools like t-test, Q-test etc.
CO3	Demonstrate t-test as hypothesis testing tool, which allows testing of an assumption applicable to a population.
CO4	Analyze on the precision and accuracy of the data obtained from the experiment.
CO5	Demonstrate the principles and working of various instrumentation techniques like UV, Ultrasonic interferometer, flame photometer, cyclic voltammeter through suitable experiments.
CO6	Discuss the importance and advantages of conductometric and potentiometric titrations over volumetric titration for quantitative analysis.
CO7	Apply Beer-Lambert's law to determine unknown concentration of Fe, Cu and Ni using colorimeter by adding suitable colouring agent.
CO8	To determine strength of given KMnO 4 solution potentiometrically and to identify the formal redox potential.
	To explain the determination of activity coefficient, Liquid Junction Potential (LJP), Transport number by Concentration Cell method.

CO/PO/PSO	РО											PSO			
0/10/130	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	3	3	3	2	2	3	3	3	2	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	2	3	3	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO6	3	3	3	3	3	2	3	3	2	3	3	3	3	3	3
CO7	3	3	3	2	3	2	3	3	3	3	3	3	3	3	3
CO8	3	3	2	3	2	2	3	3	3	3	3	3	3	3	3

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. No.	LIST OF EXPERIMENTS	COs
1.	Colorimetric estimation of Copper	(CO1 &CO7)
2.	Colorimetric estimation of Iron.	(CO1 &CO7)
3.	Analysis of kidney stones by permanganometry.	(CO1&CO4)
4.	Comparison of analytical results using t-test obtained by two different volumetric methods A (Permanganometry) and B (Dichrometry) in the estimation of Fe ²⁺ sample solution.	(CO2 & CO3)
5.	Comparison of analytical results using t-test, obtained with the same method on samples (soft drink A & B) to measure the percentage analyte (Sodium and Potassium) using flame photometry.	(CO2, CO3 & CO4)
6.	Determination of adsorption efficiency of metal ion (iron) using activated charcoal and Perform a Q-test on the set of data by varying time and amount of adsorbent used	(CO2 & CO3)

7.	Spectrophotometric determination of the K _a of an acid-base indicator (Methyl Orange).	(CO5)	
8.	Verification of additive property of potassium permanganate and potassium dichromate using UV -visible spectrophotometer. (CO5)		
9.	To study the kinetics of saponification of Ethyl acetate by Sodium Hydroxide by conductometric titrations. (CO		
10.	To determine the strength of given KMnO ₄ solution potentiometrically by redox titration (Oxalic acid or Ferrous Ammonium Sulphate) and to identify the formal redox potential in the above titration.	(CO6)	
11.	Determination of activity coefficient, Liquid Junction Potential (LJP), Transport number by Concentration Cell method	(CO8)	
12.	Determination of half wave potentials for Cu ²⁺ , Zn ²⁺ , Mn ²⁺ in ammonia buffer cyclic voltammetrically.	(CO5)	
13.	Determination of the velocity of ultrasonic waves in a non-electrolytic liquid by Ultrasonic Interferometry.	(CO5)	

REFERENCE BOOKS:

- 1. D. A. Skoog, 1985, Principles of Instrumental Methods of Analysis, III Ed. Saunders College Pubs.
- 2. Willard Merrit, Dean and Settle. 1986 Instrumental Methods of Analysis, VI Ed. CBS Pubs.
- 3. A. I. Vogel, 1976. Text Book of Qualitative Inorganic Analysis III Ed. ELBS.
- 4. D. A. Skoog and D. M. West, 1982 Fundamental of Analytical Chemistry, IV Ed. Old Reinhord& Winston Pubs.

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

	SEMESTER-III							
	Core IX Organic Chemistry		6	3	40	60	100	4
	Core X	Inorganic Chemistry-III	6	3	40	60	100	4
	Core XI	Physical Chemistry-III	6	3	40	60	100	4
тт								
III	Soft Skill III	-		3	40	60	100	2
		Internship (not less than 4						
		weeks)	-	-	-	-	-	2
		SEMESTER-	IV					
	Core XII	Organic Chemistry-IV	6	3	40	60	100	4
	Core XIII	Inorganic Chemistry-IV	6	3	40	60	100	4
	Core XIV	Physical Chemistry-IV	6	3	40	60	100	4
	Core XV	Physical Chemistry	_	6	40	60	100	4
		Practical II*	5					4
		Organic Chemistry		7 6	40	60	100	
	Elective II	Practical II* OR Research	7					3
IV		Methodology						
		Inorganic Chemistry			6 40			
	Elective III	Practical II* OR Modern	5	6		60	100	3
		Instrumental Techniques						
	Soft Skill IV -			3	40	60	100	2
	Advanced	Analytical Chemistry	5	6	6 40	60	100	3
	Course	Practical-II*	5	0			100	3
		Group Project / Review*	-	6	40	60	100	3

SCHEME FOR II YEAR M.Sc CHEMISTRY (2020-2021 BATCH)

SYLLABUS FOR THIRD SEMESTER

COURSE TITLE: CORE IX - ORGANIC CHEMISTRY III

Course Code : 1923312	Credits : (04
L:T:P:S : 4:0:0:0	CIA Marks : 4	40
Exam Hours : 03	ESE Marks : 6	50

LEARNING OBJECTIVES:

This course will expose students, the techniques involved in the structural determination of organic molecules using UV, IR, NMR Spectroscopy and Mass spectrometry as tools. In addition, aromaticity, organic photochemistry, pericyclic reaction, the synthesis of Anthocyanins, Flavones, Isoflavanones, Carotenoids and Steroids will be introduced in detail.

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

	They can apply woodward Ficher rule in solving organic structures. They can determine
	the functional groups & predict the structure of molecule using UV, IR & mass data. They
C01	can analyse & predict the geometry of biomolecules by applying ORD, CD, GS-MS
	They can apply the concept of ORD &CD in solving the geometry of cis & trans 10
	methyl decalone. They can analyse biomolecules using GC-MS.
	They can predict the structure of organic compounds using ¹ H-NMR/ ¹³ C/UV/ &Mass
	data. By analysing the spectra, they can also able predict the structure & Stereochemistry
CO2	of a simple/ complicated moleculeBy using data, they can compare the geometry of a
CO2	molecule They can characterize molecules having different functional group using mass
	spectroscopy .They can able to differentiate enantiomers & diastereoisomers. They can
	predict various types of carbon (Quartenary) using ¹³ C- NMR spectroscopy.
	By applying Huckels & Craigs rule they can able to classify/ differentiate benzenoid &
CO3	non-benzenoid compounds. They can predict the product under thermal /photochemical
	conditions.
	They are able to classify the types of pericyclic reactions. They can predict the product
CO4	with possible geometry & they can conclude wheather a particular type of reaction is
	taking place under thermal or photochemical conditions.
	They can draw the structure of some important alkaloids & steroids. They can outline the
CO5	synthesis of anthocyanins, flavones, isoflavnonones, carotenoids & steroids. They
	can examine the structure of cholesterol by chemical degradation.

PO PSO CO/PO/PSO **CO1 CO2 CO3 CO4 CO5**

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S. NO	CONTENTS OF MODULE	Hrs	COs
	 PHYSICAL METHODS FOR THE STRUCTURAL DETERMINATION OF ORGANIC COMPOUNDS : UV-IR AND MASS SPECTROMETRY, ORD, CD, AXIAL HALOKETONE RULE AND OCTANT RULE 1.1 Organic structure determination. Principles, applications of UV-Visible spectroscopy Woodward Fischer Rule-(Derivation of Beer- lambart's law is not required) - IR spectroscopy quantitative applications and organic structure determination. 1.2 Mass spectrometry-Instrumentation- nitrogen rule- odd and even electron rule- fundamentals- molecular ion peak, base peak, isotopic peak and meta stable ions- Mass fragmentation of functional groups- aliphatic alkanes and hydrocarbons, alcohol, phenol, carbonyl compounds- carboxylic acid, esters - Mclafferty rearrangement- amines, nitro compounds - Retro Diel's Alder 	Hrs 20	COs CO1
	reaction in Mass Spectrometry- Hydrogen transfer reaction- Tandem Mass Spectrometry – GC-MS - Analysis of Biomolecules.		

			-	
	1.3	Optical rotatory dispersion and Cotton effect – applications-plain		
		curves -specific rotation Vs wavelength, Molecular rotation Vs		
		Wavelength-Non plain curves-applications-Location of methyl		
		group at C2 or C4 in 3-cholestanone, ring size, conformational		
		changes in menthone and degree of ketal formation. Application		
		of ORD and CD to stereochemistry of cyclohexanone.		
	1.4	Axial haloketo rule and octant rule. Problem solving approach.		
		(Applicable to 3methylcyclohexanones and cis and trans-10-		
		methyl-2-decalone).		
	NM	IR SPECTROSCOPY (¹ H AND ¹³ C)		
	2.1	1H Nuclear Magnetic resonance spectroscopy - Chemical shift,		
		spin-spin coupling - geminal, vicinal, long-range-1J, 2J, 3J, 4J		
		and 5J coupling in NMR, Spin systems: Two interacting nuclei:		
		A2, AB, AX, AA'BB', dd, pair of doublet, AB quartet, and		
		higher- Pople nomenclature- coupling constants, NMR and		
		symmetry, second order effects in coupled systems, virtual		
		coupling and shift reagents. Factors affecting coupling constant:		
		cis, trans, gem, ortho, meta, para coupling – exchange with		
		deuterium.		
	2.2	Applications to organic structure determination. FT-NMR, NOE		
2		studies, 2D NMR (COSY, HOMOCOR, HETCOR) and	18	CO2
		stereochemistry – Differentiating enantiomers and diastereomers.		
	2.3			
		requirement, PFT, proton noise or broadband decoupling,		
		Decoupling technique: SFORD and Off Resonance decoupled		
		spectrum identification of various types of carbon using ^{13}C		
		NMR. Quaternary carbons, chemical shifts, spin-spin coupling.		
		Homo nuclear and heteronuclear coupling.		
	24	Applications and examples, conjoint problems (solving the		
	2.7	structure of a compound using UV, IR, NMR spectroscopy and		
		MASS spectrometry)		
	ΔP	OMATICITY AND ORGANIC PHOTOCHEMISTRY		
		Aromaticity of benzenoid, heterocyclic and non-benzenoid		
3	5.1	compounds- Huckel's ruleAromatic systems with pi electron	16	CO3
		numbers other than six, non-aromatic and anti-aromatic systems -		
		numbers other than Six, non-aromatic and anti-aromatic systems -		

		systems with more than 10 pi electrons – Annulenes up to C18,		
		fulvenes, fulvalenes and azulenes - craig's rule (preparation,		
		physical and chemical properties of all these compounds is not		
	expected). 3.2 Photochemistry of ketones, Norrish Type I and II, photo			
		reduction, photo addition of alpha, beta unsaturated ketones,		
		photo cycloaddition, photo oxidation, Paterno - Buchi reaction,		
		Di-pi methane rearrangement (bicyclic systems not required) -		
		Barton reaction, photo- Fries reaction.		
	PE	RICYCLIC REACTIONS		
	4.1	Pericyclic reaction – classification (Electrocyclic, Cycloaddition,		
		Sigmatropic, cheletropic reactions - one example each) - Orbital		
		symmetry-Woodword Hoffman rules.		
	4.2	Electrocyclic reactions -FMO and correlation diagram -		
		Interconversion of butadiene – cyclobutene- hexatriene to		
4		cyclohexadiene.	18	CO4
	4.3	Cycloaddition FMO and correlation diagram $-(2s + 2s)$, $(4s + 2s)$		
		-Diels alder reaction		
	4.4	Sigmatropic reactions- FMO method only $-(1,3),(1,5)$, $(1,7)$ and		
		(3,3) sigmatropic rearrangements – oxy cope, aza cope and		
		Claisen rearrangements. Structure of bulvalene - fluxional		
		molecule.		
	AN	THOCYANINS, FLAVONES, ISOFLAVANONES,		
	CA	ROTENOIDS AND STEROIDS		
	5.1	Anthocyanins-Robinson synthesis of Cyanin (Properties and		
		reactions not required). Flavones - general method of synthesis		
		- Reaction with KOH- Quercetin- Robinson Method - Baker		
5		Venkatraman and Robinson syntheses. Isoflavones- Reaction	18	CO5
5		with KOH -daidzein only-Spath and Baker Ollis synthesis-		
		Carotenoids –Weedon et al synthesis of Lycopene.		
	5.2	Elucidation of structure of cholesterol (by chemical degradation).		
		Conversion of cholestrol to progestrone, esterone and		
		testosterone.		

REFERENCES & TEXT BOOKS

- 1. Silverstein R.M. Bassler G.C. and Morril, Spectrometric identification of Organic Compounds, 5th Edition, John Wiley and Sons, New York, 1991.
- 2. Finar I.L. Organic Chemistry Vol.II, 5th edition, ELBS Publication, 1986.
- 3. Kalsi, P.S. Spectroscopy of Organic Compounds, Wiley Eastern Ltd, Chennai, 2002.
- 4. Depuy C.H. and O.L.Chapman., Molecular reaction and Photochemistry, Pearson Education Ltd., 1972.
- 5. Pacquette L.A., Principles of Modern Heterocyclic Chemistry, Benjamin Cummings Publishing Co., London, 1978.
- 6. March J. Advanced Organic Chemistry, 7th Edition, Singapore, 1992.
- Carey F.A. and Sundberg R.J. Advanced Organic Chemistry, 4th Edition, Plenum Press, New York, 1990.
- 8. Neil S. Issacs, Physical Organic Chemistry, ELBS Publication, 1987.
- 9. Kalsi P.S., Texbook of Organic Chemistry, Mcmillan India Ltd., 1999.
- 10. Cid. M.M. and Bravo J., Structure elucidation in organic chemistry: The search for right tools, John wiley and sons, 2015.
- 11. Field L.D., Sternhell S. and Kalman J.R., Organic structures from spectra, Wiley, 2013.
- 12. Nachod(ed) F.C., Determination of Organic structures by physical methods Vol.3, Elsevier science, 2012.
- 13. Silverstein R.M., Webster F.X., Kiemle D.J. and Bryce D.L., Spectrometric identification of Organic Compounds, John Wiley and Sons, 2014.
- 14. Pavia D.L., Lampman G.M., Kriz G.S.and Vyvyan J.A., Introduction to Spectroscopy, Cengage learning, 2014.
- 15. Yadav L.D.S, Organic Spectroscopy, Springer science and business media, 2013.
- 16. Lambert, J.B. Gronert, S. Shruvell, H.F., Lightner, D. and Cooks, R.G., Organic structural spectroscopy, Pearson Education limited, 2013.
- 17. Yong-cheng Ning, Interpretation of organic spectra, John Wiley and Sons, 2011.
- Sharma, Y.R., Elementary organic spectroscopy: Principles and chemical applications, S.Chand, 2010.
- 19. Jagmohan, Organic Spectroscopy: Principles and applications, Narosa book distributors, 2009.
- 20. William kemp, Organic spectroscopy, Palgrave Macmillan, 2008.
- 21. Williams, D.H., Spectroscopic methods in Organic Chemistry, McGraw-Hill Higher education, 2007.

- 22. Kalsi, P.S., Spectroscopy of Organic Compounds New age International Pvt LTd., 2007.
- 23. Finar, I.L., Organic Chemistry Vol.II, 5th edition, ELBS Publications, 1986.
- 24. Crabbe, P. ORD and CD in chemistry and biochemistry, Elsevier, 2012.
- 25. Chatwal G.R. and Anand, S.K., Instrumental methods of chemical analysis, Himalaya publishing house, 2011.
- 26. Sharma, B.K., Instrumental methods of chemical analysis, Krishna prakashan media, 2009.
- 27. Willard, H. Merrit, L.L., Dean J.A. and Settle, F.A., Instrumental methods of analysis, CBS publishers and distributors, 2004.
- 28. Sun, S.F., Optical rotator dispersion and Circular dichroism, Wiley, 2004.
- 29. Lightner D.A. and J.E.Gurst, Organic conformational analysis and stereochemistry from circular dichroism spectroscopy-methods in stereochemical analysis-book 23, Wiley-VCH, 2000.
- 30. Coxon, J.M. and Halton, B., Organic photochemistry 2nd edition, Cambridge India, 2015.
- 31. Kagan, J., Organic photochemistry: Principles and applications, Academic press, 2012.
- 32. Sapana gupta, Practice problems of photochemistry, Lulu.com, 2014.
- Turro, N.J., Scaiano J.C. and Ramamurthy, V., Modern molecular photochemistry of organic molecules, University science books, 2010.
- 34. Clan P. and Wirz, J., Photochemistry of organic coumpounds-From concepts to practice, Wiley, 2009.
- 35. Griesbeck A.G. and Mattay, J., Synthetic organic photochemistry, CRC press, 2004.
- 36. Gleiter, R., Haberhaur G.and Hoffmann, R., Aromaticity and conjugation effects, Wiley-VCH, 2012.
- 37. Hepworth, J.D. Waring, D.R., Waring, M.J., Aromatic chemistry, Wiley-RSC, 2003.
- 38. Kumar, S. Kumar V.and Singh, S.P., Pericyclic reactions: A mechanistic and problem solving approach, Academic press 2015.
- 39. Bachrach, S.M., Computational organic chemistry, John Wiley & sons 2014.
- 40. Fleming, I. Pericyclic reactions, Oxford university primers, 2015.
- 41. Jena, S., Pericyclic reactions through solved problems, Create space independent publishing platform, 2014.
- 42. Singh, J., Photochemistry and pericyclic reactions, New age, 2012.
- 43. Sankararaman S., Percicyclic Reactions A textbook: Reactions, applications and theory, Wiley-VCH, 2005.
- 44. Jonathan Clayden, Nick Greeves & Stuart Warren, Organic Chemistry, Second Edition, Oxford University press.

WEBSITES:

- 1. <u>http://www.asdlib.org/</u>
- 2. <u>http://www.chemdex.org/</u>
- 3. <u>https://courses.stu.qmul.ac.uk/NatSci/sbcs/info/home.htm%20</u>
- 4. <u>http://www.iupac.org/</u>
- 5. <u>http://www.rsc.org/periodic-table</u>
- 6. <u>http://www.rsc.org/learn-chemistry</u>
- 7. <u>https://courses.stu.qmul.ac.uk/NatSci/sbcs/info/webmaths.htm</u>
- 8. <u>http://webbook.nist.gov/chemistry/</u>
- 9. http://www.organic-chemistry.org/
- 10. http://www.orgsyn.org/
- 11. http://www.ilpi.com/organomet/index.html
- 12. http://www.spectroscopynow.com/
- 13. http://www.chem.qmul.ac.uk/surfaces/
- 14. http://scienceworld.wolfram.com/chemistry/letters/
- 15. <u>http://www.rsc.org/</u>
- 16. <u>https://www.acs.org/content/acs/en.html</u>
- 17. http://ww1.iucr.org/cww-top/crystal.index.html
- 18. <u>http://iupac.org/</u>

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

COURSE TITLE: CORE PAPER X - INORGANIC CHEMISTRY – III

Course Code : 1923313	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

LEARNING OBJECTIVES:

This course will expose students, the basic and necessary techniques involved in the structural determination of inorganic and organic molecules along with their bonding characteristics using several spectroscopic domains like UV, IR, NMR, NQR, ESR and Mossbauer Spectroscopy. In addition the concept of determination of ground and excited state term symbols for dn systems is imparted to the students and the concept of correlation diagrams with electronic spectroscopy pertaining to inorganic complexes with selection rules are provided in depth. A detailed study on the stability of the inorganic complexes based on the nature of metal and ligand is also provided.

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

CO1	Students will be able to explain the selection rules, predict and identify the IR stretching frequencies of some important functional groups in complexes and bonding in metal carbonyls.
CO2	Students will able to explain the principle and applications of NQR spectroscopy
	Students will be able to predict and identify the ¹⁹ F, ³¹ P, and ¹⁵ N NMR spectra of various
CO3	compounds. Students will use the principle of EPR spectroscopy to calculate or predict
	the EPR signals of both organic and inorganic compounds.
COA	Students will use the principle of MÖssbauer spectroscopy to analyse the MÖssbauer
CO4	spectra of Fe and Sn complexes.
005	Students will explain the selection rules for electronic spectroscopy; predict the term
CO5	symbols, analyse the Orgel and T.S. diagrams.
COC	Students will able to explain the stability constant, factors affecting stability constant,
CO6	and methods of determining them.
0.05	Students will use the HSAB concept, theoretical basis of hardness and softness and
CO7	explain the macrocyclic ligands.

CO/PO/PSO					Р	0							PSO		
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	3	3	3	2	2	1	3	3	3	3	2	3	2	3
CO2	3	3	3	2	3	2	1	2	2	2	3	3	2	3	3
CO3	3	3	3	3	2	2	2	2	2	3	3	2	3	3	3
CO4	3	3	3	2	3	2	2	2	2	3	3	2	3	2	3
CO5	3	3	3	3	2	3	2	2	3	3	3	3	2	3	3
CO6	3	3	3	3	3	2	3	3	2	3	3	2	3	2	3
CO7	3	3	3	3	2	3	2	3	3	2	3	2	2	3	3

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

STRONGLY CORRELATED -3, MODERATELY CORRELATED - 2, WEAKLY CORRELATED -1

S. No.	CONTENTS OF MODULE	Hrs	COs
No.	 SPECTROSCOPY-I 1.1 Infra Red Spectroscopy 1.1.1 Selection rule-Stretching frequencies of some important functional groups. 1.1.2 Study of hydrogen bonding, effect of coordination on the stretching frequency- carboxylic acids, amides, esters, sulphato and aqua complexes-bonding in carbonyls. 1.2 Nuclear Quadrupole Resonance Spectroscopy 2.1. Quadrupole nuclei-quadrupole moment-electric field gradient (EFG): symmetrical and non-symmetrical field gradients-asymmetry parameters η- Quadrupole energy states and their interaction with the electromagnetic radiation- NMR vs NQR. 2.2. NQR transition energy for the axially symmetric systems (I = 3/2, 5/2, 7/2 and 1) and NQR transition energy for the non-axial 	115	CO1, CO2

3	 MÖssbauer spectroscopy 3.1.1 Principle-recoil energy- Doppler shift –natural width- MÖssbauer effect-Instrumentation- isomer shift or chemical shift-quadrupole splitting-Zeeman splitting (magnetic hyperfine splitting). 3.1.2 Application of Mossbauer spectroscopy in the study of iron 			
	SPECTROSCOPY-III			
2	 SPECTROSCOPY-II 2.1 Nuclear Magnetic Resonance Spectroscopy ¹⁹F, ³¹P, and ¹⁵N NMR spectra- introduction- structural problems of the compounds like SF4, PF5, BrF5, HPF2, H3PO4, H3PO3, H3PO2, P4S3. Isomers of Rh (PPh3)3Cl3, [Pt X2(PR3)2], P3N3Cl4F2, P4N4Cl6 (NHC6H5)2, P3N3 (C6H5)3F3, R2PF3. 2.2 Electron Spin Resonance Spectroscopy Introduction- information gained from EPR – 'g' and 'A' parameters-line width-presentation of EPR spectra and use of standard- Mc-Connel equation-Kramer's rule of degeneracy-energy level splitting in zero magnetic field-EPR spectra of transition metal ion complexes like bis(salicylaldimine) copper (II), Co₃(CO)₉Se, [(NH3)₅Co-O₂-Co(NH3)₅]⁵⁺and Mn²⁺ complexes-representative spectra of different dⁿ systems- evaluation of spin-orbit coupling. 			
	symmetric systems (I = 3/2 and 1)- splitting by magnetic field (Zeeman effect)- conditions to observe the NQR signals- Instrumentation. Applications of NQR spectroscopy-structural determination-group 13 halides- MX ₃ (M= Al; X= Cl) – BrCN, PCl ₅ , SiCl ₄ , - hybridization scheme- H ₂ S.			

	3.1	3.1 Introduction to Electronic Spectroscopy						
		3.2.1 Origin and different regions of electronic spectra-electron						
		transition in metal complexes-d-d and charge transfer						
		spectra (L-M, M-L, inter ligand, M-M transitions). L-S						
		coupling, spectroscopic states, rules for the determination						
		of spectroscopic states according to L-S coupling scheme.						
		3.2.2 Term symbols, Term states for d^n – ions (ground state for						
		transitions.						
		3.2.3 Orgel correlation diagrams for octahedral and tetrahedral						
		complexes - Mn ²⁺ high spin complexes - limitations of						
		Orgel energy diagrams. Sugano - Tanabe diagrams.						
	STA	ABILITY OF COORDINATION COMPLEXES-I:						
	4.1	Stability of complexes: Thermodynamic Stability – Stepwise and						
		Overall Stability Constants and their relationships.						
	4.2	Factors affecting the stability of the complexes- statistical factor-						
		electronic structure of the metal ions: charge on the central metal						
4		ion, size of the metal ion, electronegativity of the metal ion-nature	10	CO6				
		of the ligand: size and charge of the ligands, basic character, chelate						
		effect, number and size of the chelate rings, steric effect,						
		macrocyclic effect.						
	4.3	Determination of stability constants by Spectrophotometric,						
		Polarographic and Potentiometric methods.						
		ABILITY OF COORDINATION COMPLEXES-I						
	5.1.	HSAB- Irving-Williams series of stability- classification of acids						
		and bases as hard or soft- characteristic features of those acids and						
		bases applications of HSAB principle- stability of the complexes						
5		having same ligands- stability of the complexes having different	15	CO7				
		ligands, stability of the complexes having same and different						
		ligands-prediction of chemical reactions-prediction of nature of						
		bonding in complexes formed by ambidentate ligands-occurrence						
		of minerals-poisoning of metal catalyst- rates of chemical						
		reactions-limitations of HSAB principle-symbiosis.						

5.2. Theoretical basis of hardness and softness –ionic and covalent bond	
theory-pi bonding theory-Pitzer's theory-relation of acid base	
strength with hardness and softness- relation of electronegativity	
with hardness and softness.	
5.3. Macrocyclic ligands- types, Schiff bases, template effect, Crown	
ethers, Cryptands.	

TEXT & REFERENCE BOOKS:

1. R.S. Drago, Physical Methods in Inorganic Chemistry, Reinhold Ny.1968.

2. E. A. V. Ebsworth, D.W.H. Rankin and S. Cradock, Structural Methods in Inorganic Chemistry, Blackwell Scientific Publ., 1976.

3. C. Shrivers, P. W. Atkins, C H Langford, Inorganic Chemistry, OUP, 1990.

4.F. Basolo and Pearson, Mechanism of Inorganic Reactions, Wiley, New York, 1967.

5. R. B. Heslop and K. Jones, Inorganic Chemistry, Elseiver Scientific Publ., 1976.

6. H. A. O. Hill and P. Day, Physical methods in Advanced Inorganic Chemistry, John Wiley, 1968.

7. C. N. R. Rao, J. R. Ferraro, Spectroscopy in Inorganic Chemistry, Vol I and II, Academic Press, 1970.

8. Purcell, K.F. and Kotz, J.C., - Inorganic Chemistry, WB Saunders Co., USA (1977)

9. J.E. Huheey, 1993, Inorganic Chemistry - Principles, Structure and Reactivity; IV Edition, Harper Collins, NY.

10. F.A. Cotton and G. Wilkinson, 1988, Advanced Inorganic Chemistry - A Comprehensive Text, III. Edition, John Wiley & Sons.

11. R. B. Jordan, Reaction mechanisms of Inorganic and Organo metallic systems, OUP, 1991.

12. N. N. Greenwood and A. Earnshaw, Chemistry of Elements Permagon, New York, 1984.

13. R.V. Parish, NMR, NQR, EPR, and Mossbauer Spectroscopy in Inorganic Chemistry. Ellis Horwood Limited. 1990.

14. A. K. Das, M. Das, Fundamental Concepts of Inorganic Chemistry, Vol. I -VII. CBS Publishers & Distributors Pvt. Ltd. I Edn. 2014.

15. Advanced Inorganic Chemistry Vol I and II by S. P. Banerjee. Books and Allied (P) Ltd. 2003.

16. R.Sarkar, General and Inorganic Chemistry Part I. Books and Allied (P) Ltd. 2006

17. R. Sarkar, General and Inorganic Chemistry Part II Books and Allied (P) Ltd. 2006.

ASSESSMENT PATTERN

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

COURSE TITLE: CORE XI - PHYSICAL CHEMISTRY III

Course Code	: 1923314	Credits	: 04
L:T:P:S	: 4:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVE

The objective of the course is to make the students to apply the concepts of quantum chemistry to chemical bonding, quantify the non-ideal nature of the electrolytes, apply the concepts of electrode kinetics for the better choice of the electrodes, prevent corrosion, develop fuel cells, determine the structure of the compounds using spectroscopy such as microwave, IR, Raman and NMR spectroscopy.

COURSE OUTCOME: At the end of the Course, the Student will be able to:

CO1	Apply LCAO-MO theory to diatomic and polyatomic molecules
CO2	Apply Huckle-Molecular orbital theory to molecules such as ethylene, butadiene, cyclobutadiene and benzene
CO3	Explain various models of the double layer and compare them to find the best model which is closure in approximation to the real structure around the electrode.
CO4	Apply the theory of activity coefficient to electrolytic solutions for practical situations
CO5	Use the theories of electrode kinetics to calculate overpotential which finds wider applications in the construction of batteries, fuel cells, electrolysis, prevention of corrosion and electroanalytical techniques such as voltammetry.
CO6	Explain the concepts of Microwave, infrared and electronic spectroscopy to determine microscopic parameters such as energy, bond length etc.
CO7	Explain the principles of nuclear resonance spectroscopy for the following magnetically active nuclei viz. ¹ H , ¹³ C, ¹⁹ F, ³¹ P use this for the structural elucidation of simple molecules.

CO/PO/PSO					Р	0	O PSO								
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	3	3	3	1	1	1	2	1	3	3	2	3	2	3
CO2	3	3	3	3	2	2	1	2	1	3	2	3	2	2	3
CO3	3	3	3	3	1	3	1	2	2	3	2	2	3	2	2
CO4	3	3	3	3	2	1	1	2	3	3	3	3	2	3	2
CO5	3	3	3	3	1	3	1	2	2	3	3	2	3	2	3
CO6	3	3	3	3	1	2	1	2	1	3	2	2	3	2	2
CO7	3	3	3	3	2	2	1	3	3	3	2	3	2	2	3

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

S. NO	CONTENTS OF MODULE	Hrs	COs
1	 CHEMICAL BONDING 1.1 Born-Oppenheimer approximation- valence bond theory for Hydrogen molecule 1.2 LCAO-MO theory for Hydrogen molecular ion, di and poly atomic molecules-Molecular term symbols 1.3 Concept of hybridization–Hybrid orbital wave functions for sp, sp2 and sp3 hybridization 1.4 Huckel theory for conjugated molecules (ethylene, butadiene, cyclobutadiene and benzene) 	18	CO1, CO2
2	ELECTROCHEMISTRY-I 2.1 Electrode-electrolyte interface: Electrical double layer - Electrocapillary phenomena - Lippmann equation	18	CO3, CO4

		cells (introductory aspects and applications)CTROSCOPY IInteraction of matter with radiation-Einstein's theory of		
	5.0	temperature, high temperature intermediate temperature fuel cells-acid fuel cells, base fuel cells, polymer electrolyte membrane fuel cells, molten carbonate fuel cells, solid oxide fuel		
	3.5	corrosion-Pourbaix diagram, kinetics of corrosion- mixed potential theory and Evans diagram Corrosion prevention: corrosion inhibition, Cathodic protection and passivation of metals Fuel cells: Comparison of fuel cell with heat engine, low		
3	3.3 3.4	Concentration polarization- principle (only) of polarography and cyclic voltammetry. Corrosion and passivation of metals: Thermodynamics of	18	CO5
	3.2	for one step and multistep electron transfer reactions- significance of exchange current density- symmetry factor- transfer coefficient Mechanism of hydrogen and oxygen evolution reactions.		
	ELE 3.1	ECTRO CHEMISTRY –II Mechanism of electrode reaction - polarization and overpotential, activation polarization -Butler-Volmer equation		
	2.4	activity coefficient of strong electrolytes determination of activity coefficient. Debye Huckel limiting law at appreciable concentration of electrolytes - Debye Huckel Bronsted equation-qualitative and quantitative verification.		
	2.22.3	Structure of double layer: Helmholtz -Perrin, Guoy- Chapmann and Stern models of electrical double layer. Zeta potential and potential at zero charge.Mean ionic activity and mean ionic activity coefficient-concept of ionic strength, Debye Huckel theory of strong electrolytes-		

	12	Vibrational anostroacoust of distancia and nalystamic		
	4.5	Vibrational spectroscopy of diatomic and polyatomic		
		molecules: Harmonic oscillator, effect of anharmonicity-		
		Vibrational spectra of polyatomic molecules: Vibrational		
		frequencies, group frequencies, vibrational coupling-overtones,		
		combination and difference bands-Fermi resonance. Vibrational		
		rotational lines-PQR branches		
	4.4	Raman Spectra: Stokes and antistokes lines- Rotational Raman		
		spectra and Vibrational Raman spectra, OPQRS branches -		
		Polarizability (Elementary ideas).		
	4.5	Electronic spectra: Molecular term symbols, Hunds rules,		
		selection rules and electronic spectra of diatomic		
		molecules,O2,CN-, CO and I2		
	4.6	Electronic spectra of polyatomic molecules: selection rules,		
		types of transition in saturated and unsaturated hydrocarbons &		
		formaldehyde, effect of conjugation, and solvent effects		
	SPE	CTROSCOPY II		
	5.1.	Resonance spectroscopy: Zeeman effect, equation of motion of		
		spin in magnetic fields, Larmar processional frequency,		
		gyromagnetic ratio.		
5	5.2.	Relaxation times, chemical shift-spin-spin coupling	18	CO7
	5.3.	NMR of simple AX and AMX type molecules		
	5.4.	¹ H , ¹³ C, ¹⁹ F, ³¹ P NMR spectra, a brief qualitative discussion of		
		Fourier transform spectroscopy.		
	L			

REFERENCE BOOKS:

- 1. S. Glasstone. Introduction to Electro Chemistry, Affiliated East West Press, New Delhi 1960
- 2. D. R. Crow Principles and Applications to Electrochemistry, Chapman and Hall, 1991.
- 3. J. O. M. Bokris and A. K. N. Reddy, Electrochemistry Volumes I & II Plenum, New York 1977.
- 4. Fundamental of Electrochemistry Philip.Reiger
- Electrochemical methods, fundamentals and applications, second edition, John Wiley & Sons, Inc. –Allen J. Bard , Larry Faulkner
- 6. J. O. M. Bokris and A. K. N. Reddy, Electrochemistry Volumes I & II Plenum, New York 1977.
- 7. Raymond Chang. Basic Principles of Spectroscopy. McGraw Hill Limited, New York 1971.
- 8. P. W. Atkins Advanced Physical Chemistry Oxford Press. 1990

- 9. C. N. Banwell, Fundamentals of Molecular Spectroscopy. McGraw Hill Limited, 1966
- 10. G.M Barrow, Introduction to Molecular Spectroscopy McGraw Hill Limited, New York 1962
- 11. W. Kemp, NMR in Chemistry, Mcmillian Limited, 1986.
- 12. B. P. Staughan, and S. Walker, Spectroscopy. Vol. I, II and III. Chapmann and Hall 1976.
- 13. J.K Sanders, and B.K Hunter, Modern NMR spectroscopy, A guide for Chemists, Oxford University Press.
- 14. R.K. Prasad, Quantum Chemistry, Wiley Eastern, New Delhi, 1992
- 15. M.W. Hanna, Quantum mechanics in Chemistry, W.A. Benjamin Inc. London, 1965.
- 16. Symmetry and spectroscopy- Daniel C. Harris & Michael D. Bertolucci
- 17. N. Levine, Quantum Chemistry, 6th edition.
- 18. Quantum Chemistry, Second Edition, Donald A. McQuarrie
- 19. Physical Chemistry : Robert G. Mortimer
- Structural method in inorganic chemistry E. A. V. Ebsworth, D. W. H. Rankin, S. Cradock Text book of Molecular Spectra And Molecular Structure. I-spectra of diatomic molecules – Gerhard Herzberg

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

SYLLABUS FOR FOURTH SEMESTER

COURSE TITLE: CORE XII – ORGANIC CHEMISTRY – IV

Course Code	: 1923415	Credits	: 04
L:T:P:S	: 6:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course, the student will be able to explain the importance of bio-organic chemistry in DNA and RNA Synthesis, demonstrate Alkaloids and Terpenoids chemistry and illustrate proteins and vitamin synthesis. In addition, the student can analyze the synthetic application of various organic reagents, protection and deprotection of functional . The student can examine the synthetic importance of organo metallic reagents using naming reactions and can create and evaluate retro synthesis and its synthetic application.

Course Outcomes: At the end of the Course, the Student will be able to:

C01	Demonstrate and evaluate the importance and application of biomolecules like DNA, RNA and processes like transcription and translation and the synthetic methodologies for purine and pyrimidine synthesis (K4)
CO2	Develop knowledge about various synthetic routes to synthesize peptides, vitamins and biosynthesis of cholesterol (K3)
CO3	Generate ideas about alkaloid and terpenoids chemistry. (K3)
CO4	Predict and propose the synthetic route of a target molecule using disconnection approach. (K5)
CO5	Design to evaluate the modalities for the protection and deprotection of functional groups, and the usage of various reagents in organic synthesis.(K5)

CO/PO/PSO	РО									PSO					
01100	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
C01	3	3	3	3	3	3	2	2	2	3	3	3	3	3	2
CO2	3	3	3	3	3	3	2	2	2	3	3	3	3	3	2
CO3	3	3	2	3	2	3	2	2	3	3	3	3	3	3	2
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

S. NO	CONTENTS OF MODULE	Hrs	COs
1	 BIO-ORGANIC CHEMISTRY 1.1 Pyrimidines–(1,3-diazines)- hybridisation, basicity, orientation in nucleophilic substitution –preparation of Purines and pyrimidines from barbituric acid and urea- preparation of cytocine from malondialdehyde and Wheeler and Liddle method 1.2 Purines-tautomerism in 2,4 dichloropyrimidine- thiamine – preparation from urea and α –cyanoester- uracil –preparation by Davidson method and adenine and guanine –Preparation of adenine by Fischer and Brederick method –Guanine – preparation by Fischer and Traub method 1.3 Structure and functions of nucleic acids- Nucleoside and nucleotide - Nucleo bases and hydrogen bonding - Chargof rule-Replication of DNA –Transcription and Translation process-Genetic code. Types and Structure of RNA –biological role of DNA and RNA-Protein synthesis and Deciphering of Genetic code. 	18	CO1

	DROTEINIC AND VITA MINC		
	PROTEINS AND VITAMINS		
	2.1 Peptides and their synthesis - Synthesis of tetrapeptide-general		
	methods - Merrified synthesis of tripeptide-using Glycine,		
	Alanine, Phenyl alanine, aspartic acid, Lysine, Cysteine, Glutamic		
	acid and Arginine.		
	2.2 Vitamins: Structure and chemical synthesis of Vitamin, A ₁ -		
2	Weeden et.al via Reformatsky pathway, Vitamin A ₂ - Isler et. al	18	CO2
	method, B ₂ - Tishler et.al, B6-Harris and Folker et.al, Vitamin D-		
	Lythgoe et. al.		
	2.3 Biosynthesis of Cholesterol synthesis of mevalolate from acetate,		
	conversion of mevalonate from isoprene, condensation of		
	isoprene to squalene, conversion of squalene to cholesterol-		
	Biosynthesis of bile acids - fatty acids.		
	ALKALOIDS AND TERPENOIDS		
	3.1 Synthesis of cocaine -Conversion of 2, 6 dihydroxy naphthalene		
	to bridged lactam stage of morphine -conversion of bridged		
	lactam to codeine/morphine – conversion of parabenzoquinone to		
3	bromo keto lactone stage of reserpine-conversion of bromoketo	18	CO3
	lactone to reserpine (Total synthesis of morphine and reserpine is		
	not required).		
	3.2 Terpene chemistry- limonene, Menthol, camphor, and α-pinene –		
	Chemical synthesis.		
	MODERN SYNTHETIC METHODOLOGY AND NAMED		
	REACTIONS IN ORGANOMETALLIC CHEMISTRY		
	4.1 Basic principles of disconnection approach to organic synthesis-		
	synthon and synthetic equivalents.		
	4.2 Retrosynthesis of 3-Methyl-1-pentane, Methyl-3-phenyl		
	butanoate, Aspirin, cis-1-isopropyl-2-benzyl ethylene, Geraniol,	10	004
4	1-phenyl-1-pentane dione, cyclopenta1,2-dione, 5,5-	18	CO4
	dimethylcyclohexane-1,3-dione and 2,6-dibromoaniline.		
	4.3 Ficini et al., synthesis analysis of Juvabione, Corey et al.,		
	synthesis of Longifolene, cubane and Z jasmine		
	4.4 Barton-McCombie reaction. Buchwald-Hartwig cross coupling		
	reaction. Heck reaction Sonogashira coupling, Julia-Lythgoe		
<u> </u>			

]
	Olefination, Chan-Lam coupling, Elington reaction, Negishi		
	coupling, Kumada and Suzuki coupling (with mechanism)		
	4.5 Glaser, Hay, Cladiot-Chodkiewicz, Sharpless reaction -		
	aymmetric amino hydroxylation and asymmetric dihydroxylation,		
	Stille, Hiyama, Hiyama-Denmark,. Fukuyama reduction- Corey-		
	Bakshi-Shibata reduction. Jacobsen-Katsuki, Prilezhaev-		
	Sharpless, Kullinkovich, Kullinkovich-de meijere and		
	Kullinkovich-Szymoniak reactions. Luche reduction. Mc Murry		
	coupling (Without mechanism)		
	Assignment topics: Study of Anti microbial and Anti bacterial		
	activity of Organo metallic compounds.		
	PROTECTION OF FUNCTIONAL GROUPS, REAGENTS AND		
	ITS APPLICATIONS IN ORGANIC SYNTHESIS AND FREE		
	RADICAL REACTIONS		
	5.1. Protection and deprotection of functional groups (R-OH, RCHO,		
	R-CO-R, R-NH ₂ and R- COOH).		
	5.2. Uses of the following reagents: 9BBN, Trimethylsilyl chloride		
	and iodide, 1,3-dithiane (Umpolung),		
	diisobutylaluminimumhydride (DIBAL), DMSO, PCC, DCC,		
5	DMAP, DEAD, TEMPO, LDA, n-butyl lithium, Dess-Martin	18	CO5
	reagent, Catechol Boranes, Enamines- alkylations and acylations.		
	Application of synthetic methodology for the synthesis of target		
	molecules - through 1,3 dithianyl derivative.		
	5.3. Long lived and short lived free radicals, sources - methods of		
	generation and detection of free radicals by Paneath and ESR		
	techniques. Decomposition of diazocompounds, phenol-coupling		
	- Sandmeyer reaction – Gomberg-Bachmann reaction, Pschorr		
	reaction, Ulmann reaction, Hunsdicker reaction.		
L	,		

TEXTBOOKS:

- Stuart Warren, Paul Wyatt, Organic Synthesis: The disconnection approach,2nd edition, Wiley and sons, 2008.
- Carey F.A. and Sundberg, R.J., Advanced Organic Chemistry, 4th Edition, Plenum Press, New York, 1990.
- 3. Finar, I.L. Organic Chemistry Vol.II, 5th edition, ELBS Publication 1986.
- March J. and Smith M.B., March's Advanced Organic Chemistry: Reactions, Mechanisms and structure, 6th edition, Wiley, 2007
- 5. House H.O., Modern Synthetic Reactions, The Benjamin Cummings Publishing Company, London, 1972.
- 6. Gupta B.D., Elias A.J. Basic oraganometallic chemistry: Concepts synthesis and applications of transition metals, Universities Press, 2010.
- Jonathan Clayden, Nick Greeves & Stuart Warren, Organic Chemistry, Second Edition, Oxford University press, 2012.

REFERENCE BOOKS:

- 1. Stuart Warren, Paul Wyatt, Organic Synthesis: Strategy and control, First edition, Wiley and sons, 2007.
- 2. Bansal, R.K, Heterocyclic chemistry, 5th ed., New age International pvt ltd publishers, 2015.
- 3. Sainsury, M., Heterocyclic chemistry, Wiley, 2014.
- 4. Eicher, T., Hauptmann, S., Speicher, A., The chemistry of heterocycles: Structure, reactions, synthesis and applications 3rd ed., John wiley& sons, 2013.
- 5. Pozharskii, A.F., Soldatenkov, A. and Katritzky, A.R., Heterocycles in life and society, Wiley, 2011.
- 6. Parashar, R.K, Heterocyclic chemistry, ANE books, 2010.
- 7. Ahluwalia, V.K., Terpenoids, ANE books, 2009.
- 8. Talapatra S.K. and Talapatra B., Chemistry of natural products: Stereochemistry, conformation, synthesis, biology and medicine, Springer, 2015.
- 9. Neil S. Issacs, Physical Organic Chemistry, ELBS Publication, 1987.
- 10. Nakanishi, K. Goto, T.and Ito, S., Natural products chemistry Vol. 1 and 2, Academic press, 2013.
- 11. Lednicer, D., Steroid chemistry at a glance, Wiley, 2011.

- 12. Kalsi, P.S. Texbook of Organic Chemistry, Mcmillan India Ltd., 1999.
- 13. Mehrotra R.C.and Singh A., Organometallic chemistry -A unified approach, New age international Ltd., New Delhi, 2009.
- 14. Carruthers W., Some Modern Methods of Organic Synthesis, 3rd Edition Cambridge University Press, 1993.

WEBSITES:

- 1. http://www.asdlib.org/
- 2. <u>http://www.chemdex.org/</u>
- 3. https://courses.stu.qmul.ac.uk/NatSci/sbcs/info/home.htm%20
- 4. <u>http://www.iupac.org/</u>
- 5. <u>http://www.rsc.org/periodic-table</u>
- 6. <u>http://www.rsc.org/learn-chemistry</u>
- 7. https://courses.stu.qmul.ac.uk/NatSci/sbcs/info/webmaths.htm
- 8. <u>http://webbook.nist.gov/chemistry/</u>
- 9. http://www.organic-chemistry.org/
- 10. http://www.orgsyn.org/

ASSESSMENT PATTERN

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

COURSE TITLE: CORE XIII - INORGANIC CHEMISTRY - IV

Course Code : 1923416	Credits : 04	
L:T:P:S : 6:0:0:0	CIA Marks : 40	
Exam Hours : 03	ESE Marks : 60	

LEARNING OBJECTIVES:

This course will expose students, the concept, theories and mechanism of substitution in 6 and 4 membered Octahedral and Square planar complexes respectively with respect to ligands and the isomerism arising from it. The concept of associative, dissociative mechanism and Marcus theory is provided in detail. The concept of photochemistry is introduced related to photooxidation, photoderuction, photosubstitution and photosensitization related to select Ru, Fe, Co and Cr complexes. A brief concept and role of nuclear processs, reactors and counters along with the knowledge involved in fission and fusion reactions in stars are explained in detail.

COURSE OUTCOMES: At the end of the Course, the Student will be able:

CO1	To assess the Ligand Substitution Reactions mechanism and its limitations, electron
	transfer reactions (K3)
CO2	To evaluate the Substitution in complexes and theories of Trans effect and its
002	applications (K5)
CO3	To analyse various Nuclear Chemical reactions, examine various types of nuclear
005	reactors, effect of radiation chemistry (K3, K5)
CO4	To evaluate the Photochemical reaction of metal Carbonyls and complexes (K4)

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO					Р	0							PSC)	
0/10/100	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	2	3	2	2	3	3	2	2	2	3	3	3	3	2
CO2	3	2	2	3	2	3	3	2	2	2	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	2	3	2	3	2	3	3	3

S. NO	CONTENTS OF MODULE	Hrs	COs
1	 COORDINATION COMPOUNDS -REACTION MECHANISMS I 1.1 Introduction: Lability-inertness-interpretation in terms of Valence Bond theory, Crystal Field theory of Octahedral complexes-CFAE; applications and limitations of CFAE-types of ligand substitution reactions-mechanism: dissociative mechanism (D), associative mechanism (A), Interchange mechanism (I). General rate law for A, D and I. Limitations of the rate law and mechanisms of ligand substitution reactions-distinction between D, Id, Ia pathways. 1.2 Substitution of octahedral complexes of cobalt and chromium, replacement of coordinated water, solvolytic (acid and base catalysed) reactions -anation reaction. Substitution reaction without the cleavage of M-L bond. 1.3 Electron transfer reactions; outer and inner sphere processes; atom transfer reaction, complementary and non-complementary reactions. 1.4 Formation and rearrangement of precursor complexes, bridging ligand, role of bridging ligand with ISET reaction- tunneling transfer -multiple bridging in the activated complex in ISET successor complexes, Marcus theory. 	30	CO1
2	 COORDINATION COMPOUNDS - REACTION MECHANISMS II 2.1 Substitution in square planar complexes, reactivity of platinum complexes, influences of entering, leaving and other groups- Swain Schott equation. 2.2 Trans influence- Trans effect- trans effect series-theories of trans effect (polarization theory, pi bonding theory, sigma bonding theory and Cardwell's electronegativity theory) and applications of trans effect. 2.3 Synthesis of Pt[ABCD] type complexes and methods to differentiate the isomers-Kurnakov test. 	10	CO2
3	 NUCLEAR CHEMISTRY-I 3.1 Nuclear properties: nuclear charge, nuclear radius, even-odd nature of nucleus (Oddo-Harkin's rule)-nucleon pairing –nuclear stability and positron emission-nuclear spin and moments, origin of nuclear forces-Yukawa's theory. 3.2 Modes of radioactive decay: orbital electron capture; nuclear isomerism, internal conversion. 	15	CO3

		1	
	3.3 Nuclear reaction: Types-projectile capture reaction-projectile capture		
	particle emission reaction-spallation reaction- nuclear fission and fusion		
	reactions as energy sources- photonuclear reactions- thermonuclear		
	reactions-reaction cross section, Q-value, threshold energy, compound		
	nucleus theory: high energy nuclear reactions,		
	NUCLEAR CHEMISTRY-II		
	4.1 Nuclear reactors: Types-Power reactor-principle of operation-components		
	of a power reactor-critical fuel assembly- Fast breeder reactors, particle		
	accelerators, linear accelerators, cyclotron, synchrotron and		
	synchrocyclotron. Units of nuclear radiation-detection and determination of		
	activity by cloud chamber, nuclear emulsion, bubble chamber, G.M.,		
4	Scintillation and Cherenkov counters.	20	CO3
	4.2 Stellar energy: Hydrogen and carbon burning, the <i>e</i> , <i>s</i> , <i>r</i> , <i>p</i> and <i>x</i> process.		
	4.3 Radiation Chemistry-Chemical effects of radioactive decay-hot atom-		
	epithermal reactions-applications-isomeric transition- radiolysis of water-		
	formation of ionic products-formation of free radicals-formation of		
	hydrated electrons-Hart and Baog's experiment-properties of hydrated		
	electron. Radio immunoassay (RIA).		
	INORGANIC PHOTOCHEMISTRY		
	5.1. Photochemical excitation-prompt and delayed reaction-photochemical		
	reaction of metal carbonyls. Co (III) complexes, Cr (III) complexes-		
	photolysis of $[M(CN)_8]^{3-}$ and $[M(CN)_8]^{4-}$ (M= Mo, W) in aqueous solution-		
	oxalato complexes $[M(ox)_3]^{3-}$ (M= Fe, Mo, Co).		
5	5.2. Photochemical reaction of Fe (II) and Fe (III) complexes-photochemical	15	CO4
	substitution process in Pt (IV).		
	5.3. Photochemistry of $[Ru(bpy)_3]^{2+}$ and its applications in solar energy		
	conversion-photochemical splitting of H_2O -TiO ₂ as a green photocatalyst in		
	removing air and water pollutants.		
	5.4. Photochemical reactions of nitrogen		
L			

TEXT & REFERENCES BOOK:

- 1. Purcell, K.F. and Kotz, J.C., Inorganic Chemistry, WB Saunders Co., USA (1977)
- 2. J.E. Huheey, 1993, Inorganic Chemistry Principles, Structure and Reactivity; IV Edition, Harper Collins, NY.
- 3. M. C. Shrivers, P. W. Atkins, C H Langford, Inorganic Chemistry, OUP, 1990.
- 4. F. Basolo and Pearson, Mechanism of Inorganic Reactions, Wiley, New York, 1967.
- 5. F.A. Cotton and G. Wilkinson, 1988, Advanced Inorganic Chemistry A Comprehensive Text, V. Edition, John Wiley & Sons.
- 6. Photochemistry of Inorganic coordination compounds by Balzani.
- 7. C.R. Choppin and J. Ryd Berg: Nuclear Chemistry Theory and Applications, Pergamon Press.
- 8. B.G. Harvey, Introduction to Nuclear Physics and Chemistry Prentice Hall, 1962.
- 9. H.J. Arnikar, Nuclear Chemistry, Wiley Eastern Co. II Edition 1987.
- 10. Glasstone & Sesonske Nuclear reactor engineering.
- 11. C. Kellter: Radiochemistry, Ellis Hardwood Ltd., John Wiley and Sons.
- 12. G.R. Chopin, Experimental Nuclear Chemistry, Prentice Hall, 1962.
- 13. G. Friedlander, J.W. Kennedy, and J.M. Miller, Nuclear and Radio Chemistry, John Wiley.
- N.J.Turro. Modern Moleular Photochemistry, Benjamin, Cummings, Mento Park, California 1978
- 15. K.K.Rohatgi Mukherjee. Fundamentals of Photochemistry, Wiley Eastern Ltd.,
- 16. A.W.Adamson and P.Fleischauer Concepts of Inorganic Photochemistry, Wiley, 1975.
- 17. Advanced Inorganic Chemistry Vol I and II by S. P. Banerjee. Books and Allied (P) Ltd. 2003.

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

COURSE TITLE: CORE XIV	- PHYSICAL CHEMISTRY – IV
-------------------------------	---------------------------

Course Code	: 1923417	Credits	: 04
L:T:P:S	: 6:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

To learn the basics of classical and quantum distribution of particles and its applications, basic and applied photochemistry principles, and introduction to material chemistry.

COURSE OUTCOMES: At the end of the Course, the Student will be able:

CO1	To enumerate on various distribution of microscopic particles and contemplate on partition function.[K1]
CO2	To articulate partition function for various thermodynamic functions, and discuss heat capacity of solids. [K3]
CO3	To compute Jablonski diagram, establish enhancement and quenching process. [K3]
CO4	To organise Photophysical, Photochemical processes and distinguish Photovoltaic, Photogalvanic cells. [K4]
CO5	To prioritize the properties of solids and persuade the solid state ionics.[K4]

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО										PSO			
0/10/150	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
C01	3	3	3	3	3	3	2	2	2	3	3	3	3	3	2
CO2	2	3	3	3	3	3	2	2	2	3	3	3	3	3	2
CO3	3	3	2	3	2	3	2	2	3	3	3	3	3	3	2
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3
TRONGLY (CORF	RELA	TED	-3.	MO	DER	ATE	LY	COR	RELA	ATEI) –	2. V	VEAF	KLY

CORRELATED -1

S. NO		CONTENTS OF MODULE	Hrs	COs				
	STA	ATISTICAL THERMODYNAMICS-I						
	1.1	Microstates and Macrostates, most probable distribution, Concept of thermodynamic probability - distribution of distinguishable and non-distinguishable particles.						
1	1.2	Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics, modes of contribution to energy.	18	CO1				
	1.3	Partition functions: Translational, Vibrational, Rotational, Electronic and Nuclear partition functions for mono, diatomic and polyatomic ideal gases.						
	ST A	ATISTICAL THERMODYNAMICS-II						
	2.1	Concept of Ensemble, Thermodynamic functions in terms of partition functions.						
2	2.2	Equilibrium constant for isotope exchange and dissociation of diatomic molecules.	18	CO2				
		Heat capacity of solids (Einstein and Debye Models). Planck's radiation law- Electrons in metals, Ortho and Para hydrogen						
	PH	OTOCHEMISTRY-I						
	3.1	Absorption and emission of radiation-Franck-Condon Principle.						
	3.2	Decay of electronically excited states – Jablonski diagram- Radiative						
3		and Non radiative processes: fluorescence and phosphorescence-spin	18	CO3				
5		forbidden radiative transition internal conversion and intersystem	10	005				
		crossing						
	3.3	Energy transfer process: Excimers and Exciplexes						
		Quenching: Static and Dynamic quenching-Stern Volmer analysis.						
		OTOCHEMISTRY-II						
	4.1							
		quantum yield references Actinometry.						
	4.2	Flourescence life time measurements- Flash photolysis using Nd-		~ ~ .				
4		YAG Laser, time correlated single photon counting techniques,	18	CO4				
	instrumentation and application							
		Kinetics of photophysical and photochemical reactions.						
	4.4	Photovoltaic and photogalvanic cells. photoelectrochemistry, Aspects of solar energy conversion.						
		טו גטומו כווכוצץ נטוויכואטוו.						

	INTRODUCTION TO PHYSICAL ASPECTS OF MATERIALS		
	5.1. Introduction - Properties of materials and some important		
	relationships		
	5.2. Free electron theory of metals, Drude model- Wiedemann Franz law,		
	Drude Sommerfeld model.		
	5.3. Anisotropy in crystal, Periodic potential, Electronic contribution to		
	specific heat at constant volume-Incorporating crystal structure in		
	model-introduction to reciprocal space, Condition for diffraction,		
5	Ewald sphere, simple cubic, FCC, BCC in reciprocal space, Wigner	18	CO5
	Seitz cell and introduction to Brillouin zones-Calculation of Allowed		
	energy gaps and forbidden gaps, Bands -Free electron approximation,		
	Tight binding Approximations		
	5.4. Addressing specific material properties using the model developed-		
	Semiconductors, superconductors, optoelectronic properties,		
	nanoscale materials (elementary approach).		

REFERENCE:

- 1. J.Rajaram & J.C.Kuriacose, 1993, Thermodynamics for students of chemistry
- 2. K.K. Rohatgi Mukherjee, 1978, Fundamentals of Photochemistry, Wiley Eastern Ltd.
- 3. N.J. Turro, 1978, Modern Molecular Photo chemistry, Benjamin, Cummings, Menlo Park, California
- 4. Statiscal thermodynamics by B.J. McClelland.
- 5. Statistical thermodynamics by Andrew Maczek
- 6. An Introduction to Statistical Thermodynamics (Dover Books on Physics) By Terrell L. Hill (Author).
- 7. Theoretical chemistry by Samuel Glasstone.
- 8. Thermodynamics, kinetic theory and Statiscal Thermodynamics by Sears.Salinger.
- 9. Bernard Valeur Molecular Fluorescence Principles and Applications.
- 10. Principles of Fluorescence Spectroscopy | Joseph R. Lakowicz .
- 11. Heat and thermodynamics and statiscal physics by Brijlal N. Subramanyam and P.S. Hemne.
- 12. Principles of photochemistry and photo physics by Bulzani
- 13. Physics of materials: Essential concepts of solid-state physics Prathap Haridoss IIT Madras- Wiley publishers

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

CORESE TITLE: CORE XV - PHYSICAL CHEMISTRY PRACTICALS II

Course Code	: 1923418	Credits	: 04
L:T:P:S	: 6:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

To understand and verify the concepts and equations in physical chemistry by carrying out the following suitable experiments.

Course Outcomes: At the end of the Course, the Student will be able to:

CO 1.	To verify laws based on electrochemistry, to determine end point of various titrations,				
	to evaluate the solubility product using conductometer.				
CO 2	To determine pH, pKa, to determine end point of various titrations, to evaluate the				
	solubility product and stability constant using Potentiometer				
CO 3.	To evaluate the endpoint of poly basic acid titration using pH meter.				
	To lead students to have a comprehensive approach to structural identification of				
CO 4.	molecules from the spectral data.				

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО										PSO				
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	
CO1	3	3	3	3	2	3	2	2	2	3	3	3	3	3	2	
CO2	3	3	2	3	2	3	2	2	2	3	3	3	3	3	2	
CO3	3	3	3	3	2	3	2	3	2	3	3	3	2	3	2	
CO4	3	3	2	2	2	3	2	2	2	3	3	3	2	3	2	

S.	CONTENTS OF MODULE	COs
No.		
1	 CONDUCTOMETRIC EXPERIMENTS 1.1 Determination of equivalent conductance of strong electrolytes and verification of Debye- Huckel- Onsager equation. 1.2 Determination of dissociation constant of weak electrolytes using Ostwald's dilution law. 1.3 Conductometric titrations between simple and mixture of strong and weak acids and strong base. 1.4 Condutometric titration of mixture of weak acid and salt of weak acid and strong base. 1.5 Conductometric titration of weak acid against weak base. 1.6 Precipitation titrations involving a single halide and BaCl2 with MgSO4. Determination of solubility product. 1.7 Determination the degree of hydrolysis and hydrolysis constant of sodium acetate conductometrically. 1.8 Determination the concentrations of H2SO4, CH3COOH and CuSO45H2O in a mixture by conductometric. titration with sodium hydroxide 1.9 Determine Critical Micellar Concentration (CMC) of sodium lauryl sulphate [Soap soln] from the measurement of conductivities at different concentrations 	CO1
2	 POTENTIOMETRIC EXPERIMENTS 2.1 Determination of pH and calculation of pKa –Buffer value 2.2 Determination of solubility product of a sparingly soluble salt. 2.3 Potentiometric titrations between simple and mixture of strong and weak acids with base. 2.4 Redox titrations by emf measurements. 2.5 Precipitation titration of mixture of halides by emf measurements. 2.6 Determination of composition of complex 2.7 Potentiometric titration of poly basic acid. 2.8 Potentiometric titration of Mixture of acids vs strong base 2.9 Solubility product determination by emf measurements 2.10 Determine the stability constant of the complex ion Ag (S2O3)23-potentiometrically. 	CO2

	pH TITRATIONS		
3	3.1 Acid-Base titration-Mixture of acids vs strong base	CO3	
	3.2 Polybasic acid titration		
	SPECTRAL ANALYSIS-INTERPRETATION		
	4.1 IR spectral data-Determination of force constant, zero point energy,		
	application of group theory concepts.		
	4.2 Vibrational rotational spectral data-line spacing, bond length		
	4.3 Rotational spectral data- Determination of internuclear distance		
	4.4 Raman spectra, data-identification of stokes, anti-stokes lines,		
	interpretation of intensity pattern, and depolarization ratio-application		
	in identification in modes of vibration.		
4	4.5 Interpretation of IR, Raman data-application of Mutual Exclusion	CO4	
4	principle. Electronic spectral data-application of Beer-Lambert's Law,	04	
	energy calculations, type of transitions, effect of solvent on intensity		
	pattern, application of Huckel's model on extended conjugation in the		
	case of real system.		
	4.6 NMR data-identification of peaks, spin multiplicity, chemical shift,		
	coupling constant, identification of nature of protons in NMR spectrum-		
	identification of nature of 13C nuclei in CMR spectra.		
	4.7 A comprehensive approach to structural identification of molecules from		
	the spectral data. (only for practice)		

REFERENCES:

- M.Sc. Physical Chemistry Practical manual-II Edited by Dr. S. Bangaru Sudarsan Alwar,; Dr. C. Srinivasan,; R. Ramesh Kumar,; V. Rajagopaln. Department of Chemistry, D. G. Vaishnav College, Arumbakkam, Chennai- 600 106.
- Practical Physical Chemistry- Editied by Prof. B. Viswanathan, V. R. Vijayaraghavan, T. Sundravadivelu, Kamala Govidarajan, S. Vivekanandan and V. Kannapan. School of Chemistry, University of Madras, Guindy Campus.1996

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

ELECTIVE II

COURSE TITLE: ORGANIC CHEMISTRY PRACTICALS-II

Course Code : 1923419	Credits : 04
L:T:P:S : 6:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

LEARNING OBJECTIVES:

This course comprises of three parts. The students are trained to I. Prepare organic compounds involving two stages and to determine their yield. II. To estimate organic compounds III. To extract organic compounds from natural resources.

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

CO1	Structure two stage preparations of organic compounds.
CO2	Estimate the given organic compound titrimetrically
CO3	Extract simple phytochemicals from natural source and detects purity and yield.
CO4	Interpret spectra from the knowledge of spectroscopic tools.

MAPPING OF COURSE OUTCOMES TO PROGRAMME OUTCOMES & PROGRAMME SPECIFIC OUTCOMES:

CO/PO/PSO				P	PSO								
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	2	2	3	3	3	2	3	3	3	3
CO2	3	3	3	2	2	3	2	3	3	3	2	3	3
CO3	3	3	3	2	3	3	2	2	3	3	3	3	3
CO4	3	3	3	1	3	3	1	2	3	2	3	3	1

S.	CONTENTS OF MODULE	COs					
No.		005					
	ORGANIC PREPARATION						
	GREY SYNTHESIS						
	1. Preparation of m-Nitro benzoic acid from methyl benzoate.						
	2. Preparation of 2-phenyl indole from benzaldehyde						
	3. *Comparison of green and grey method (phthalimide from phthalic anhydride).						
	4. Preparation of Benzoin from benzaldehyde – benzil from benzoin.						
1	Benzilic acid from benzaldehyde.	CO1					
	5. Benzophenone oxime from benzophenone- benzophenone oxime to benzanilide						
	6. *Preparation of Isatin via Indigo from Anthranilic acid.						
	GREEN SYNTHESIS						
	7. Acetylation of primary amine using zinc dust						
	8. Nitration of phenol using calcium nitrate						
	9. Radical coupling reaction – preparation of 1,1 – bis -2- naphthol						
	ORGANIC ESTIMATION						
	1. Estimation of aniline by bromination (Bromate- Bromide) method						
	2. Estimation of phenol by bromination (Bromate- Bromide) method						
2	3. Estimation of glucose (Bertrand's Method)	CO2					
2	4. Estimation of glycine by Sorensen's Formol method	02					
	5. Estimation of formaldehyde (formalin)						
	6. Estimation of acetic acid in commercial vinegar.						
	7. Estimation of Vitamin C (Reduced)						
	ANY TWO EXERCISES IN THE EXTRACTION OF NATURAL						
	PRODUCTS:						
	1. Caffeine from tea leaves						
3	2. Lactose from milk	CO3					
	3. Citric acid from lemon						
	4. Piperine from black pepper						
	5. Lycopene from tomato paste						
	SPECTRAL INTERPRETATION OF THE FOLLOWING						
4	ORGANIC COMPOUNDS (UV, IR, PMR AND MASS SPECTRA)	CO4					
	1. 1, 3, 5-Trimethylbenzene						

2.	Pinacolone	
3.	n-Propyl amine	
4.	p-Methoxybenzyl alcohol	
5.	Benzyl bromide	
6.	Phenyl acetone	
7.	2-Methoxyethyl acetate	
8.	Acetone	
9.	Isopropyl alcohol	
10.	Acetaldehyde diacetate	
11.	2-N, N-Dimethylamino ethanol	
12.	Pyridine	
13.	4-Picoline	
14.	1, 3 dibromo-1, 1-dichloropropene	
15.	Cinnamaldehyde.	
16.	Sucrose	
17.	Citral	

REFERENCE

- 1. Arthur I. Vogel, A Text Book of Practical Organic Chemistry.
- 2. Spectrometric identification of organic compounds by R.M.Silverstein, G.C.Basseller and Monsil, John Wiley and sons, Newyork.
- 3. Spectroscopy of organic compounds by P.S.Kalsi, Wiley Eastern Ltd., Chennai.
- 4. Raj K. Bansal, Laboratory Manual of Organic Chemistry, Wiley Eastern Limited.
- 5. Mann and Saunders, Laboratory manual of Organic Chemistry

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

DISCIPLINE SPECIFIC ELECTIVE COURSE-II (DSE)

Course Code :	Credits : 04
L:T:P:S : 6:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

COURSE TITLE: RESEARCH METHODOLOGY (90 HOURS)

LEARNING OBJECTIVES:

To learn the Scientific awareness and selection of research problem, Literature Survey, Collection of Data, Reporting and thesis writing and also Computer Applications

COURSE OUTCOMES: At the end of the Course, the Student will be able:

CO1	To enumerate on scientific awareness and selection of research problem. [K1]
CO2	To articulate thorough literature survey using various resources. [K3]
CO3	To organize the data collection process. [K3]
CO4	To organise the reports and writing the thesis. [K4]
CO5	To enumerate the computer aided applications like chem. Draw, excel, origin etc. [K4]

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО									PSO				
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
C01	3	3	3	3	3	3	2	2	2	3	3	3	3	3	2
CO2	2	3	3	3	3	3	2	2	2	3	3	3	3	3	2
CO3	3	3	2	3	2	3	2	2	3	3	3	3	3	3	2
CO4	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3

S. NO	CONTENTS OF MODULE	Hrs	COs
1	 Unit 1 Scientific awareness and selection of research problem 1.1 General scientific awareness; Objectives of research-What makes one to do research? Research design - meaning, Need for research, Components of research design, various stages of research - selection of research problem and hypothesis. 1.2 Basic principles of experimental design-important experimental design-Basic research 1.3 Possible approaches to be adopted by a researcher; factors affecting quality of research, 1.4 Problems encountered by researchers in India 	18	CO1
2	 Unit 2 Literature Survey 2.1 Primary and secondary sources-reviews, treaties, monographs, patents, current literature search methods, abstraction of research papers, 2.2 Major secondary sources-bibliography databases, 2.3 Web as a source of information, searching the web. 2.4 Literature search using Sci-finder scholar, Scopus. 	18	CO2
3	 Unit 3 Collection of Data 3.1 Collection of primary data-observation method, interview method and survey methods, Survey Techniques and Methods – Treatment of data- t-test., Q-test, F-test, significant figures and its importance – 3.2 Sources of error in research data, tests for sound measurement-Techniques of developing measurement tools - Processing and analysis of data-Statistical methods. 	18	CO3

	3.3 Measures of central tendency - measures of relationship, simple regression analysis, multiple correlation and regression		
4	 Unit 4 Reporting and thesis writing 4.1 Structure and components of scientific papers, technical reports and thesis –planning the scientific paper-contents of scientific papers and reports-Illustrations and tables. 4.2 Plots – diagrams – structures and figures presentation - Preparation of final manuscript /thesis-mechanics of writing a research report-proof reading / correction of research manuscript, style manuals. 4.3 Bibliography referencing and foot notes etc. Issues related to copyright-reproduction of published materials-royalty - Patenting 	18	CO4
5	 Unit 5 Computer Applications 5.1 Drawing structures using Chem. Draw. 5.2 Application of Excel programme for drawing tabular columns – plots – doing simple calculations. 5.3 Online submission of research articles. 	18	CO5

References

1. J.Anderson Durston and pools; THESIS AND ASSIGNMENT WRITING, New Delhi;

Wiley Eastern, 1970

2. Joseph Gibald MLA HAND-BOOK FOR WRITERS OF REASEACH PAPERS

6th edition New Delhi; Affiliated East-west press, 2003

3. T.S.Wilkinson and P.L Bhandarkar, METHODOLOGY AND TECNIQUES OF SOCIAL RESEARCH, Bombay; Himalaya publishing company, 2001

4.Periannan, S. sebastian, SOCIAL RESEARCH METHODOLOGY An introduction Chennai, University of Madras; Department of Christian studies, 2003

4. E.Sreedharan-A TEXT BOOK OF HISTORIOGRAPHY 500 B.C to A.D 2000,

Bombay, Orient Longman, 2004

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

ELECTIVE – III COURSE TITLE: INORGANIC CHEMISTRY PRACTICAL – II

Course Code	: 1923420	Credits	: 04
L:T:P:S	: 6:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

- *I.* To estimate the metal ions from the given mixture of Inorganic compounds using lab techniques.
- II. To prepare various metal complexes involving Cu, Ni, Co
- III. Interpretation of spectra

COURSE OUTCOMES: At the end of the Course, the Student will be able:

CO1	To estimate the metal ions in the given mixture (K5)			
CO2	To prepare various complexes involving, Cu, Cr, Ni, Al (K3)			
CO3	To interpret NMR, ESR, IR and MB of various compounds, complexes (K3)			

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO					Р	0					PSO				
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
C01	3	3	3	3	2	2	3	2	3	2	3	2	3	3	3
CO2	3	3	3	3	2	2	3	2	3	2	3	2	3	3	3
CO3	3	3	3	2	2	2	3	2	2	2	3	2	3	3	3

S. NO		CONTENTS OF MODULE								
	QU	ANTITATIVE ANALYSIS:								
	1.	Mixture of iron and magnesium.								
	2.	Mixture of iron and nickel								
1	3.	Mixture of copper and nickel	CO1							
	4.	Mixture of copper and zinc.								
	5.	*Mixture of Calcium and Magnesium.								
	6.	Mixture of Iron and Copper.								
		MPLEX PREPARATION								
	1.	Potassium (trisoxalato aluminate III) trihydrate.								
	2.	(Tris thiourea copper I) chloride								
	3.	Potassium trisoxalato chromate (III) trihydrate								
	4.	Sodium bisthiosulphato cuprate (I)								
2	5.	Tristhiourea copper (I) sulphate	CO2							
	6.	Sodium hexanitrocobaltate (III)								
	7.	Chloropentamminecobalt (III) chloride								
	8.	Bisacetylacetanato copper (II)								
	9.	Hexamminenickel (II) chloride								
	SPI	ECTRAL INTERPRETATION:								
	1.	List of spectra to be given for interpretation								
	2.	³¹ P NMR Spectra of methylphosphate.								
	3.	³¹ P NMR Spectra of HPF ₂								
3	4.	¹⁹ F NMR Spectra of ClF ₃	CO3							
	5.	¹ H NMR Spectra of Tris (ethylthioacetoacetanato) cobalt (III)								
	6.	Expanded high resolution ¹ H NMR Spectra of (N-propyl								
		isonitrosoacetylacetoneiminato) (acetylacetoneiminato) Nickel (II)								
	7.	ESR Spectra of the aqueous $ON(SO_3)_2^{2-}$ ion.								
	8.	ESR Spectra of H atoms in CaF ₂ .								

- 9. ESR Spectra of $[Mn (H_2O)_6]^{2+}$ ion.
- 10. ESR Spectra of bis (salicyladiminato) copper (II).
- 11. IR Spectra of the sulphato ligand.
- 12. IR Spectra of nitro and nitropentaminecobalt (III) chloride.
- 13. IR Spectra of dimethylgyloxime ligand and its Nickel (II) complex.
- 14. IR Spectra of Carbonyls.
- 15. Mossbauer spectra of FeSO₄.7H₂O.
- 16. Mossbauer spectra of FeCl₃
- 17. Mossbauer spectra of $[Fe(CN)_6]^{3-}$.
- 18. Mossbauer spectra of $[Fe(CN)_6]^{4-}$.
- 19. Electronic spectra of $[Co (en)_3]^{3+}$
- 20. Electronic spectra of [Cr (NH₃)₆]³⁺
- 21. Electronic spectra of Cis and Trans $[Co (en)_2 (Cl)_2]^{2+}$

* Not for examination

TEXT & REFERENCE BOOKS:

- 1. Text book of Inorganic quantitative analysis by Vogel.
- 2. Principles of Instrumental Analysis: Douglas A.Skoog, 3rd Edition.
- 3. Physical Methods in Inorganic Chemistry: R.S.Drago. Reinhold NY. 1968.
- 4. R.V. Parish, NMR, NQR, EPR, and Mossbauer Spectroscopy in Inorganic Chemistry. Ellis Horwood Limited. 1990.

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

ELECTIVE PAPER III COURSE TITLE: MODERN INSTRUMENTATION TECHNIQUES (90 Hrs)

Course Code	:	Credits	:04
L:T:P:S	: 6:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

This course is offered for students to have exposure to the various purification techniques involved in synthesis. Students get clear knowledge in both principles and application of spectroscopy like UV-Visible, NMR, ESR, Mossbauer, Photoelectron and Mass spectrometry and also electroanalytical techniques and better understanding in magnetic properties.

Course Outcomes: At the end of the Course, the Student will be able to:

CO 1.	To enumerate on advanced purification techniques in organic and inorganic preparations.
	[K1]
CO 2	To prioritize both principles and application of spectroscopy like UV-Visible, NMR,
	ESR, Mossbauer, Photoelectron and Mass spectrometry [K3]
	To identify different decomposition temperature of the samples and thermal stability
CO 3.	from TGA/DTA thermogram. To determine the phase transition temperature from DSC.
	[K3]
CO 4.	To deduce and quantify the presence of metal ions by electro-analytical techniques. [K4]
CO 5.	To analyse the magnetic properties of compounds.[K3]

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO				Р	0				PSO				
0/10/150	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	3	2	3	2	2	3	3	3	3	2
CO2	3	3	2	3	2	3	2	2	3	3	3	3	2
CO3	3	3	3	3	2	3	2	3	3	3	2	3	2
CO4	3	3	3	2	2	3	2	2	3	3	2	3	2
CO5	3	3	3	3	2	3	3	3	3	3	2	3	2

Sl	CONTENTS OF MODULE	Hrs	COs
NO	CONTENTS OF MODULE	пт	COS
1	UNIT 1: PURIFICATION TECHNIQUES: Physical properties - usefulness in analysis and methods of separation prior to analysis – Isolation techniques – extraction - crystallization, sublimation, distillation, different types of distillation techniques – steam distillation – reduced pressure distillation – fractional distillation - Analytical distillation, Thermal hazards of these techniques – chromatography – column, paper, thin layer and gas chromatography – Reaction techniques to include high dilution, vacuum line reactions, reactions aided by azeotropic distillation, recycling pyrolysis, Soxhlet extraction, continuous reactions, reactions at low temperatures, reactions in non-aqueous media and molten salts, micro quantity handling and use of glove box. Special methods in modern chemistry – methods for vacuum sublimation and quasi sublimation, technique and apparatus for reactions in inert atmosphere and under low temperature, working with hazardous materials – air/water sensitive, corrosive, toxic, explosive and radioactive materials – use of nitrogen atmosphere and its significance.	18	CO1
2	 UNIT 2: SPECTROSCOPY: Optical spectroscopy –UV, Visible and IR spectroscopy with reference to radiation source, Optical materials, monochromators and detectors, Principles – the design of single beam and double beam spectrophotometers – Application of optical spectroscopy in qualitative and quantitative analysis 2.1 Magnetic Resonance Spectroscopy –Nuclear magnetic and electron magnetic resonance spectroscopy – Basic features of the NMR and ESR spectrometers. NMR: Chemical shift, spin-spin coupling and double resonance. NMR shift reagents – Applications of NMR spectroscopy in qualitative and quantitative analysis – wide line and FT NMR C¹³ NMR. ESR: Hyperfine splitting – g 	18	CO2

5	UNIT 5 MAGNETIC PROPERTIES:	18	CO5
	 polarography – applications in quantitative and qualitative analysis b) Coulometry: Types of coulometric methods - coulometric analysis at constant electrode potentials – titrations involving neutralization, precipitation and complex forming reactions. 	18	CO4
4	a) Voltammetry: Dropping mercury electrode DME – Polarographic analysis – The shape of polarographic wave – Ilkovic equation for diffusion current – significance of half wave potentials - polarographic maxima and their eliminations – instrumentation of	10	604
3	 UNIT 3 THERMOANALYTICAL METHODS: Thermo gravimetric analysis (TGA) Thermo balances Derivative thermo- gravimetric analysis (DTG) Differential thermal analysis (DTA) The DTA apparatus, DSC, DTA Thermometric titrations UNIT 4 ELECTROANALYTICAL METHODS: 	18	CO3
	 value – factors affecting the magnitude of 'g' value. Zero field splitting. ESR spectra of organic radicals and transition metal complexes. 2.2 Mossbauer spectroscopy–The Mossbauer effect – nuclei exhibiting Mossbauer effect – experimental techniques – isomer shift, quadrupole splitting – applications. 2.3 Photoelectron Spectroscopy –XPS and UPS- Instrumentation – radiation sources – energy analyzers and detectors – use of XPS and UPS as analytical tools 2.4 Mass spectrometry –Mass spectrometer instrumentation – the ion source, mass analysers – detectors – vacuum system – data processing – sample handling – applications of mass spectrometry in quantitative and qualitative analysis. 		

Measurements – different methods – comparison and use in
structural elucidation. Magnetic susceptibility-measurement, types,
applications. Temperature dependence and independence
paramagnetism- Curie's law, Weiss law-ferromagnetism,
ferrimagnetism, antiferromagnetism.

References:

- Instrumental methods of analysis, H.H.Willard, L.I. Merrit Jr and J.A.Dean. Affiliated East West Press 1974.
- Principles of Instrumental Analysis (second edition), D.M.Scoog and D.M.West Holt-Saunders, Japan 1980.
- 3. Analytical Chemistry R.Gopalan, S.Chand &Co.
- 4. R.S.Drago, Physical methods in Inorganic Chemistry, Reinhold Ny.1968.
- E.A.V Ebsworth, D.W.H.Rankin and S.Cradock, Structural methods in Inorganic Chemistry, Blackwell Scientific Publ., 1976.

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

ADVANCED COURSE II COURSE TITLE: ANALYTICAL CHEMISTRY PRACTICALS II

Course Code	: 1923421	Credits	: 03
L:T:P:S	: 4:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OUTCOMES:

The basic understanding of various analytical techniques are being made by various analytical tools such as colorimetry, conductometry, potentiometry, UV – visible spectrophotometry, Flame photometry, cyclic voltammetry, IR and photo-catalytic reactor.

COURSE OUTCOMES: At the end of the Course, the Student will be able to

CO1	Students will use the Beer-Lambert's law and able to determine the amount of protein,			
Nickel and manganese by colorimetry.				
CO2	Students will estimate the percentage of Sodium and Potassium in a commercial electoral			
02	sample and Sodium and Calcium in a mixture using flame photometry.			
CO3	Students will use the pH meter for the determination of dissociation constant of weak			
005	acid.			
	Students will explain the determination of the basicity and dissociation constant of			
CO4	oxalic acid, phosphoric acid and acetic acid and determine the iso electric point of an			
	amino acid by potentiometric titrations.			
	Students will determine the stability constant of the complex formed between			
CO5	potassium oxalate and lead nitrate, estimate the amount of Ascorbic acid using and			
	verify the Randel's Sevick equation, using cyclic voltammetry.			
CO6	Students will estimate the amount of Zinc by complex formation with EDTA by			
000	conductometry.			
	Students will verify the Beer's-Lambert's Law and calculation of Molal Extinction			
CO7	Coefficient at different wavelength for KMnO ₄ and K ₂ Cr ₂ O ₇ using UV-Visible Single			
	beam spectrophotometer.			
CO8	Students will identify functional groups in Ethyl alcohol, Acetone, Aniline, Aldehyde			
	and Acetic acid, using Infrared Spectroscopy.			

CO9	Students will determine the kinetic parameters for degradation of dye using Photo
09	Catalytic Reactor.

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO					Р	0							PSO		
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	3	3	3	2	2	1	3	3	3	3	2	3	2	3
CO2	3	3	3	2	3	2	1	2	2	2	3	3	2	3	3
CO3	3	3	3	3	2	2	2	2	2	3	3	2	3	3	3
CO4	3	3	3	2	3	2	2	2	2	3	3	2	3	2	3
CO5	3	3	3	3	2	3	2	2	3	3	3	3	2	3	3
CO6	3	3	3	3	3	2	3	3	2	3	3	2	3	2	3
CO7	3	3	3	3	2	3	2	3	3	2	3	2	2	3	3
CO8	3	3	3	3	2	2	2	2	2	3	3	2	3	3	3
CO9	3	3	3	3	2	3	2	2	3	3	3	3	2	3	3

S.No.	CONTENTS OF MODULE	COs
	LIST OF EXPERIMENTS	
	COLORIMETRY	
1	Colorimetric estimation of Nickel.	CO1
2	Colorimetric estimation of Manganese.	
3	Colorimetric estimation of protein by biuret.	
	FLAME PHOTOMETERY	
4	Estimation of Sodium and Potassium in commercial electral samples using	CON
	flame photometry.	CO2
5	Estimation of Sodium and Calcium in a mixture using flame photometry.	
	pH METRY	
6	Determination of dissociation constant of weak acid using pH meter.	CO3
	POTENTIOMETRY	
7	Determination of the basicity and dissociation constant of oxalic acid,	
	phosphoric acid and acetic acid by potentiometry.	CO4
8	Determination of isoelectric point of an amino acid by potentiometric	
	titration.	
	CYCLIC VOLTAMMETRY	
9	Determination of stability constant of the complex formed between	
	potassium oxalate and lead nitrate using cyclic voltammetry.	(CO5)
10	Estimation of Ascorbic acid using Cyclic Voltammetry.	
	Verification of Randel's Sevick equation in Cyclic Voltammetry.	
	CONDUCTOMETRY	COL
11	Estimation of Zinc vs EDTA by conductometry.	CO6
	SPECTROPHOTOMETRY	
	Verification of Beer's-Lambert's Law and calculation of Molal Extinction	CO7
12	Coefficient at different wavelength for KMnO4 and K2Cr2O7 using UV-	07
	Visible Single beam spectrophotometer.	
	IR-SPECTROMETER	
13	Identification of functional groups of Ethyl alcohol, Acetone, Aniline,	CO8
	Aldehyde and Acetic acid, using Infrared Spectroscopy.	
	PHOTOCATALYTIC REACTOR	
14	Determination of kinetic parameters for degradation of dye using Photo	CO9
	Catalytic Reactor.	

REFERENCE BOOKS:

- 1. D. A. Skoog, 1985, Principles of Instrumental Methods of Analysis, III Ed.Saunders College Pubs.
- 2. Willard Merrit, Dean and Settle. 1986 Instrumental Methods of Analysis, VI Ed. CBS Pubs.
- 3. A. I. Vogel, 1976. Text Book of Qualitative Inorganic Analysis III Ed. ELBS.
- 4. D. A. Skoog and D. M. West, 1982 Fundamental of Analytical Chemistry, IV Ed. Old Reinhord& Winston Pubs.

ASSESSMENT PATTERN

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	