DEPARTMENT OF CHEMISTRY

CHOICE BASED CREDIT SYSTEM (CBCS) OUTCOME BASED EDUCATION (OBE) SYLLABUS

B.Sc. CHEMISTRY

2020 - 2021 BATCH

DWARAKA DOSS GOVERDHAN DOSS VAISHNAV COLLEGE (AUTONOMOUS)

College with Potential for Excellence Linguistic Minority Institution Affiliated to University of Madras

E.V.R. PERIYAR HIGH ROAD,

ARUMBAKKAM, CHENNAI – 600106, TAMILNADU.

S. No	CONTENTS	PAGE NUMBER
1	Vision, Mission	1
2	Eligibility for admission and Program educational objective (PEO)	2
3	Program outcome (PO)	3
4	Program specific outcome (PSO)	6
	SCHEME	
5	Scheme of First Semester	7
6	Scheme of Second Semester	7
7	Scheme of Third Semester	30
8	Scheme of fourth Semester	30
9	Scheme of Fifth Semester	47
10	Scheme of Sixth Semester	47
	SYLLABUS	
11	Syllabus of First Semester:	8
12	Syllabus of Second Semester	15
13	Syllabus of Third Semester	31
14	Syllabus of Fourth Semester:	38
15	Syllabus of Fifth Semester:	49
16	Syllabus of Sixth Semester:	72

D.G.VAISHNAV COLLEGE

VISION

To impart value-based quality academia; To empower students with wisdom and to charge them with rich Indian traditions and culture; to invoke the self, to broaden the same towards nation building, harmony and universal brotherhood

MISSION

To ensure sustained progress and development in imparting quality education, to pioneer new avenues of teaching and research and to emerge as an institution with potential for excellence

DEPARTMENT OF THE CHEMISTRY

VISION

To impart a sound **knowledge** in chemistry to the students that stresses scientific reasoning and problem-solving skills.

To equip students with the **skills** required to strengthen their social responsibility and to make them competent in this knowledge-driven society.

MISSION

	To educate students with state-of-the-art curriculum, improvised teaching						
	methodologies and progressive research facilities.						
	methodologies and progressive research facilities.						
M1							
	To expose students to a breadth of experimental techniques this will transform them						
	into quality chemist.						
	into quanty chemist.						
	To produce socially responsible chemist who can contribute more to the industry and						
	to address problems of societal importance.						
	to address problems of societar importance.						
M2							
	To make the department a thriving center of excellence in teaching, curriculum						
	development and valuable research						
M3	To outreach the under-privileged students of the city in the form of workshops, on-						
	line courses, etc that showcase the role of chemistry as central science.						
	The courses, etc that showcase the role of chemistry as central science.						

Eligibility for admission to B.Sc.

Pass in H.S.C or CBSE examination conducted by state board /central board with Mathematics, Physics, Chemistry as the main subjects.

Duration of course

B. Sc. (three years)

Eligibility for the award of degree

Passing of all the subjects (both in internal and ESE) offered by the college for the course.

PROGRAM EDUCATION OBJECTIVES (PEOs)

PEO1	To produce efficient and intellectual undergraduates with strong fundamentals in
	organic, inorganic, physical and analytical chemistry to pursue higher studies in the
	field of research, innovation and technology
PEO2	To make undergraduates, capable of attaining employment in teaching and industry.
PEO3	To enable undergraduates to develop professionally through life-long learning, higher
	education and other creative entrepreneurial pursuits in their areas of expertise or
	interest.
PEO4	
DEOF	
PEO5	

PEO TO MISSION STATEMENT MAPPING

MISSION STATEMENTS	PEO1	PEO2	PEO3	PEO4	PEO5
M1	2	2	2		
M2	2	1	3		
M3	1	2	3		

CORRELATION:

3- STRONG

2- MEDIUM

1-LOW

PROGRAMME OUTCOMES

At the completion of the B.Sc. Chemistry program, the students of our Department will be able to :

S.N	GRADUATE	PROGRAMME OUTCOMES
0	ATTRIBUTES	
1.	Knowledge	Attain in depth knowledge about the fundamental principles,
		essential facts, conclusions and applications of chemical and
		scientific theories in various domains of chemistry. (PO1)
2.	Critical Thinking	Carry out experiments in the area of organic analysis,
		estimation, derivative process, inorganic semi micro analysis,
		preparation, Kinetic, conductometric and potentiometric
		experiments and spectral analysis applying the domain of
2		critical thinking. (PO2)
3.	Problem Solving	Define the background of reaction mechanisms, complex
		chemical structures, instrumental method of chemical analysis,
		and separation techniques and apply appropriate techniques for analysing specific problems both qualitatively and
		quantitatively in laboratories and in industries. (PO3)
4.	Usage of modern tools	Create data using modern chemical tools and ICT for modeling
-.	Usage of model in tools	and analyze the data obtained from sophisticated instruments
		(like UV-Vis, FTIR, NMR, GCMS, Fluorescence, SEM, TEM
		and XRD) for chemical analysis (PO4)
5.	Communication	Develop Skills to evaluate, analyze and interpret the chemical
		information and data and to communicate effectively within the
		chemical community and with society at large, such as, being
		able to comprehend and write effective reports and design
		documentation, make effective presentations, and give and
		receive clear instructions. (PO5)
6.	Life-long Learning	Demonstrate scholarly attitude to pursue a career in the field of
		chemical education and research and have the zeal and vision
		to engage in independent and life-long learning in the broadest
7	Falstand Descations and	context of technological and social change. (PO6)
7.	Ethical Practices and	Generate ideas and solutions for green and sustainable
	Social Responsibility	chemistry and approach towards planning and execution of research in frontier areas of chemical sciences. (PO7)
		research in frontier areas of chemical sciences. (FO 7)
8.	Independent and	Develop entrepreneurial skills in interdisciplinary and
	Reflective Learning	multidisciplinary areas of chemical sciences and its
		applications and develop a zeal to pursue a career in the field
		of chemistry.(PO8)

Mapping of POs TO PEOs

PEO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
PEO 1	3	2	2	2	2	2	1
PEO 2	2	2	3	1	2	2	3
PEO 3	2	3	3	2	1	1	3
PEO 4	3	2	2	2	1	1	2
PEO 5	2	2	2	3	2	2	1

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

PROGRAM SPECIFIC OUTCOMES (PSO's)

At the time of graduation, our under graduates would be able to:

PSO 1- Evaluate, analyze, interpret and effectively apply the basic laws, principles, phenomena, processes and mechanisms involved in the domain of organic, inorganic, physical and analytical Chemistry

PSO2 - Demonstrate the knowledge of Chemistry in the domain of research, education and perspective entrepreneurship.

PSO3 - Evaluate distinct problems in the field of chemical data analysis, scientific interpretation and reaction mechanisms with an understanding on basic tools to be employed.

PSO4 – Apply the knowledge of Chemistry to appreciate, develop and test the theoretical aspects for applications in environment, materials, medicines, and technology.

PSO5 - Employ standard laboratory equipment, instrumentation and classical techniques to carry out experiments and develop skills to interpret and explain the validity of experimental data in terms of accuracy and underlying theory.

SCHEME OF I YEAR B.Sc. PROGRAM

				Μ	M	AX. MA	RKS	
SEM	PART	TITLE OF THE PAPER	INSTRUCTION HOURS/WEEK	DURATION OF EXAM	CIA	ESE	TOTAL	CREDITS
		SEMESTE	ER-I					
	Ι	Language Paper –I	6	3	40	60	100	3
	II	English Paper –I	6	3	40	60	100	3
	III	Core Paper - General Chemistry-I	6	3	40	60	100	5
Ι	III	Mathematics –I	9	3	40	60	100	5
	V	NME- I Detection of Adulterants in food-Practical I	2	3	40	60	100	2
	V	Soft skill I	6	3	40	60	100	3
		TOTAL CREDITS						21
		SEMESTE	R-II					
	Ι	Language Paper –II	6	3	40	60	100	3
	II	English Paper –II	6	3	40	60	100	3
	III	Core Paper –II General Chemistry-II	6	3	40	60	100	5
п	III•	Core Paper– III Qualitative Inorganic Mixture Analysis - Practical I	3	3	40	60	100	4
	III	Mathematics –II	9	3	40	60	100	5
	V	NME – II Significance of chemistry in everyday life-Practical II	2	3	40	60	100	2
	V	Soft skill II		3	40	60	100	3
		TOTAL CREDITS						25

* Examination will be conducted at the end of the Semester

COURSE TITLE: CORE I - GENERAL CHEMISTRY -I

Course Code	:	Credits	: 05
L:T:P:S	: 6:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to assess the ideal and non-ideal behavior of gases, to apply the concepts in first law of thermodynamics to analyse given thermochemical reactions, to analyse periodic properties, to analyse anions and cations in a given sample and to apply basic concepts of organic chemistry to assess the different reactions.

Course Outcomes: At the end of the Course, the Student will be able to:

	Calculate the thermal energy of gases using kinetic theory of gases and it can be
	compared with the results of principle of equipartition of energy - Identify the
	distribution of molecular velocities using Maxwell equation and - calculate the
CO 1	mean, root mean square and most probable velocity of gases - Assess an ideal and
	non-ideal behaviour of gases with the help of various equation of states -Use the
	basic concepts of gaseous state in thermodynamic study
	Differentiate work and heat, isothermal and adiabatic processes, reversible and
CO O	irreversible processes - Calculate enthalpy change for a given reaction from heat
CO 2	capacity data - Calculate work, heat, ΔU , ΔH , for reversible and irreversible
	processes from First law of thermodynamics.
	Classify metals, non-metals and metalloids - Explain chemical behaviour of the
CO 3	elements from periodic properties - Determine electronegativity using Pauling scale
	- Justify factors affecting the periodic properties
	Analyse the basic radicals in a given sample from the concepts of solubility,
CO 4	solubility product, and common ion effect - Estimate the amount of substance
	present in the whole of the given solution from the principles of volumetric analysis
	Compare the stability of intermediates, acidity of carboxylic acids, basicity of
CO 5	amines from polar effects - Assess the chemistry of alkanes - Differentiate
	Conformation and configuration

CO/PO/PSO		РО								PSO			
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO 1	3	3	3	2	3	3	2	3	3	3	3	3	2
CO 2	3	3	3	2	3	3	3	2	3	3	3	3	3
CO 3	3	3	3	2	3	3	2	3	3	3	2	3	2
CO 4	3	3	3	3	3	3	3	3	3	3	2	3	2
CO 5	3	3	3	2	3	3	3	2	3	3	3	3	2
CO 6	3	3	3	2	3	3	3	2	3	3	3	3	2

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

S.	CONTENTS OF MODULE	Hrs	COs
No			
1	 GASEOUS STATE 1.1 Gas laws - kinetic theory of gases –collision frequency- collision diameter – mean free path – collision number – equipartition of energy – molecular basis of heat capacity 1.2 Transport properties – diffusion, elementary ideas of thermal conductivity and viscosity of gases. 1.3 Maxwell's Distribution of molecular velocities (no derivation) – Derivation of the expression for mean, root mean square and most probable velocity. 1.4 Real gases- compressibility factor- deviation from ideality- different equations of state- derivation of Van der Waal's equation of state – Andrew plot-consequences of Vander Waals equation of state- derivation – critical constants –Relationship between critical constants and Vander Waals constants-continuity of state. 1.5 Virial equation of State – Law of corresponding states – Boyle Temperature 	15	CO1
2	THERMODYNAMICS 1 2.1 System and surrounding – Isolated, closed and open systems	15	CO2

	2.2	Intensive and extensive variables. Thermodynamic equilibrium-		
		thermodynamic state Thermodynamic processes - isothermal &		
		adiabatic processes – State and path functions .Exact and inexact		
		differentials- difference between the nature of heat and work.		
,	2.3	Work of expansion at constant pressure – comparison of work done		
		in single stage, two stage, and multistage expansion and		
		compression–reversible and irreversible processes - free		
		expansion.		
,	2.4	Statement of zeroth law of thermodynamics.		
		Internal Energy (E) and its properties- Perpetual motion machine I -		
	2.5	The first law of		
,	26	Thermodynamics- limitations changes in energy at constant		
	2.0	volume- Joules experiment.		
,	27	Enthalpy (H) – properties -difference between internal energy and		
	2.7	enthalpy. Practical relevance of enthalpy over internal energy.		
		Heat capacity. Relation between Cp and Cv for ideal and real		
		gases. Calculation of enthalpy changes from heat capacity data.		
,	2.8	Calculation of w, q, ΔE and ΔH for expansion of ideal gases under		
	2.0	isothermal and adiabatic conditions of reversible and irreversible		
		processesrelated problems		
	ELI	ECTRONIC CONFIGURATION & PERIODIC PROPERTIES		
		Aufbau principles $(n+l)$ rule- Hund's rule – Pauli's exclusion		
		principle- stability of half and fully filled orbitals – anomalous		
		electronic configuration.		
,	3.2	Classification of elements as s, p, d and f blocks-types of elements-		
		metals, non metals and metalloids; trend in the periodicity of		
		properties on going down a group and across a period.	15	000
3	3.3	Atomic radius-covalent radius, vander walls radius, metallic radius,	15	CO3
		atomic radii of noble gases-Ionic radius -determination of ionic radius		
		based on effective nuclear charge- applications in explaining the		
		chemical behaviour- Ionization potential-factors affecting ionization		
		potential, applications in explaining the chemical behaviour- Electron		
		affinity- factors affecting electron affinity, applications in explaining		
		the chemical behaviour.		

	3.4 Electro negativity- determination of electronegativity-Pauling's scale							
		factors affecting electro negativity, applications of electronegativity in						
		metallic behaviour in the periodic table.						
	PR	INCIPLES OF INORGANIC QUALITATIVE AND						
	VO	LUMETRIC ANALYSIS						
	4.1	Solubility and solubility products -relation between solubility and						
		solubility product-use of solubility products in comparing relative						
		solubilities of salts - common ion effect -their application in cation analysis.						
	4.2	Separation of group II and IV groups using H ₂ S method-uses of NH ₄ Cl						
4		in III group separation.	15	CO4				
	4.3	Expression of concentration-mole, molecular weight, equivalent						
		weight, molarity, normality, formality, molality, percentage, mole						
		fraction, ppm, ppb. (simple problems based on above concepts) -						
		primary and secondary standards.						
	4.4	Types of indicators with examples- choice of indicators-adsorption						
		indicators-Types of titrations- acid base (strong acid and strong base;						
		strong acid and weak base-only).						
	BA	SIC CONCEPTS OF ORGANIC CHEMISTRY						
	5.1	IUPAC nomenclature - Alkanes, alkenes, alkynes, functional groups						
		up to 8 C atoms						
	5.2	Temporary effects - polarizability effects - electron displacement -						
		electromeric and inductomeric effects - Permanent effects - polar						
		effects - inductive, mesomeric effects - difference between						
5		mesomerism and resonance - Hyper conjugation, steric and field						
		effects, ortho – effect.	15	CO5				
	5.3	Hybridization and geometry- methane, ethane, ethylene, acetylene,						
		benzene.						
	5.4	Nucleophiles and electrophiles. Reactive Intermediates: Carbocations,						
		Carbanions and free radicals, carbenes and nitrenes (basic idea).						
	5.5	Chemistry of alkanes – preparation – advantage of Corey – House						
		synthesis over Wurtz reaction - Concept of Umpolung and use of						
		Gilman reagent – Kumada coupling.						

5.	– properties – reaction with H_2 , X_2 , and HX		
5.5	3 Relative stabilities of cycloalkanes – Difference between Configuration and Conformation - cyclopropane to various forms of cyclohexane – Bayer's strain theory		
6 6 6	 LKENES, ALKYNES AND DIENES 1 Preparation of alkenes – Wittig reaction 2 Properties of alkenes – electrophilic and radical additions – general mechanisms -E1, E2 and E1cB- reactions- illustration and mechanism with standard examples. A brief study of Reactivity of substrate, structure, nature of base, temperature, and solvent - Hofmann & Saytzeff rules. 3 Reactions: syn-addition (alk. KMnO4) and anti-addition (bromine), Addition of HX (Markovnikoff's and anti-Markovnikoff's addition), Hydration, Ozonolysis, oxymecuration - demercuration, Hydroboration - oxidation. 4 Properties of Alkynes - Reduction of alkynes - selectivity, Heck reaction, Sonogashira reaction - Preparation of higher alkynes from acetylides and alkynyl Grignard reagents. 5 Acyclic and cyclic alkynes - Cycloalkenes- reaction with NBS– Cyclohexene – correct representation -description. 6 Dienes – Classification – Reactions of 1,3-butadiene - Acyclic dienes . 7 Click reactions – Diels – alder and retro- Diels – alder reaction 	15	CO6

REFERENCES:

- Principles of Physical Chemistry, Puri, Sharma, Pathania 27th edn, Vishal Publishing Co, 2016
- 2. Advanced Physical Chemistry P.W. Atkins, 8th edition, Oxford Press, 2009.
- Physical Chemistry 4th Edn, Robert J. Silbey , Robert A. Alberty , Moungi G. Bawendi, JohnWiley & Sons, Inc.,
- 4. A Text book of Physical Chemistry, A S Negi, S C Anand, New Age International Publishers, 2007.
- 5. Physical Chemistry, W. J. Moore- Longman Publishing Group; 5th edition (1998)

- 6. A text book of Physical Chemistry, Glasstone, 2nd edition, Macmillan
- A text book of physical chemistry: KL Kapoor (Volume 2 & 3), McGraw Hill Education (for Thermodynamics)
- 8. Physical Chemistry, Gilbert W. Castellan, 3rd edition, Narosa (for Thermodynamics and Gaseous state)
- Puri B.R., Sharma L.R., Kalia K.K Principles of Inorganic chemistry, (23rd edition), New Delhi, Shoban Lal Nagin Chand Co 1993.
- Morrison R.T., Boyd R.N., Organic Chemistry, 6th edition, Allyn & Bacon Ltd., Newyork (2006)
- 11. Jain.M.C., Sharma.S.C., Modern Organic Chemistry, Vishal Publication (1967).
- 12. Bruice Paula Yurkani., Organic Chemistry, 8th Edition, Pearson (1938)
- 13. IGNOU materials for undergraduate courses for all the topics (materials can be downloaded from the following website. (<u>www.egyankosh.ac.in</u>) IGNOU school of sciences- levels -bachelor degree programs current BSC- (general): full content download (.zip/.rar) elective course in chemistry (English) view/open)
- Furniss, B.S., et al., Vogel's Textbook of Practical Inorganic Chemistry, VII Edn. London, ELBS-Longman, (1984) (for Unit 4 and inorganic qualitative analysis practicals)
- 15. Vogels text book of quantitative chemical analysis. Fifth edition or sixth edition
- 16. NPTEL video lectures.

ASSESSMENT PATTERN

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze	-	-	5	-
Evaluate	-	-	-	_
Create	-	-	-	-

CIE- Continuous Internal Evaluation (40 Marks)

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	-
Create	-

Course Code :	Credits	: 05
L:T:P:S : 6:0:0:0	CIA Marks	: 40
Exam Hours : 03	ESE Marks	: 60

COURSE TITLE: CORE II - GENERAL CHEMISTRY – II

LEARNING OBJECTIVES:

On taking this course the student will be able to interpret the different properties of solids, to analyse thermo chemical reactions, to assess the nature of chemical bonding, to analyse properties of *s*- block elements, and to assess the reactions involved in aromatic and halogen compounds.

Course Outcomes: At the end of the Course, the Student will be able to:

	Calculate packing fraction, radius ratio, density of crystals – Determine interplanar
	distance in crystals from X-ray diffraction data - Explain the conductance of insulators,
0.01	
CO 1	semiconductors, superconductors
	Calculate heat of reaction, heat of solution, heat of dilution, bond energy, bond enthalpy
CO 2	for a given thermochemical reaction from thermodynamic data.
	Calculate lattice energy from Born-Haber cycle and assess the factors affecting lattice
	energy - Determine the hybridisation and shapes of simple inorganic molecules from
CO 3	VSEPR and VB theory - Sketch the Molecular orbital diagram for homo and hetero
	diatomic molecules.
	Analyse physical and chemical properties and applications of alkali and alkaline earth
	metals - Compare stabilities of carbonates of alkaline earth metals - Compare the
CO 4	solubility of sulphates of alkaline earth metals - Restate the special position of hydrogen
	in the periodic table
	Compare the stability of intermediates from the concept of aromaticity - Assess the
	mechanism of electrophilic substitution reaction in polynuclear hydrocarbons and it's
CO 5	reactivity towards the same reaction.
	Assess the mechanism of S_N1 , S_N2 , and S_Ni reactions and analyse the effect of substrate
	structure, base, temperature, solvent, nucleophiles towards the same reactions - Analyse
CO 6	the reactions of halogen derivatives and poly halogen derivatives.

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО									PSO		
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO 1	3	3	3	2	3	3	2	3	3	3	3	3	2
CO 2	3	3	3	2	3	3	3	2	3	3	3	3	3
CO 3	3	3	3	2	3	3	2	3	3	3	2	3	2
CO 4	3	3	3	3	3	3	3	3	3	3	2	3	2
CO 5	3	3	3	2	3	3	3	2	3	3	3	3	2
CO 6	3	3	3	2	3	3	3	2	3	3	3	3	2

S. No	CONTENTS OF MODULE	Hrs	COs
1	 Unit 1 Solid State Chemistry 1.1 Crystalline solids, space lattice, Unit cell, seven crystal system, Bravaise lattices, close packing of crystals. 1.2 Packing fraction, radius ratio calculation, stability of ionic crystals- density of crystals, Miller indices, interplanar spacing- X-ray diffraction, Laue method and Debye-Scherrer (powder) method- intensities and structural determination of sodium chloride. 1.3 Bragg's equation, application of Bragg's equation to cubic crystal systems (simple cubic, BCC and FCC). 1.4 Classification of materials based on electrical conductivity- Metallic conductors- Theories of metallic bonding- Electron gas, Pauling and band theories-Semi conductors-n-type and p-type- applications- rectifiers, transistors, LED. 1.5 Super conductors- introductory ideas 	20	CO1
	 Unit 2 Thermodynamics 2 2.1 Relation between heat of reaction at constant volume (q_v) and at constant pressure (q_p) –heat of reactions-heat of formation and standard states 		

 2.2 Hess law and its relationship with first law of thermodynamics – applications- calorimetry-determination of heat of reactions 2.3 Temperature dependence of heat of reaction – Kirchhoff's equation – calculation from heat capacity data – problems. 2.4 Bond energy and resonance energy - calculation from thermo chemical data 2.5 Integral and differential heats of solution and heat of dilution. Chemical Bonding 3.1 Ionic bond – conditions for the formation of ionic bond-characteristic of ionic compounds-Lattice energy – Born-Haber cycle, Born-Lande equation (no derivation)-factors affecting lattice energy, solubility comparing hydration and lattice energy 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₃ and IF₇. 3.6 MO theory – conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules-H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules IF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic				
 a calculation from heat capacity data – problems. 2.4 Bond energy and resonance energy - calculation from thermo chemical data 2.5 Integral and differential heats of solution and heat of dilution. Chemical Bonding 3.1 Jonic bond – conditions for the formation of ionic bond-characteristic of ionic compounds-Lattice energy – Born-Haber cycle, Born-Lande equation (no derivation)-factors affecting lattice energy, solubility comparing hydration and lattice energy 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules - H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 2.4 Bond energy and resonance energy - calculation from thermo chemical data 2.5 Integral and differential heats of solution and heat of dilution. Chemical Bonding 3.1 Ionic bond – conditions for the formation of ionic bond-characteristic of ionic compounds-Lattice energy – Born-Haber cycle, Born-Lande equation (no derivation)-factors affecting lattice energy, solubility comparing hydration and lattice energy 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3 A Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules - H₂, Ho₂, C₂, N₂, O₂, hetero diatomic molecules – HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCI and HF) ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power - hydration ion and 		2.3 Temperature dependence of heat of reaction – Kirchhoff's equation	10	CO2
data 2.5 Integral and differential heats of solution and heat of dilution. Chemical Bonding 3.1 Ionic bond – conditions for the formation of ionic bond-characteristic of ionic compounds-Lattice energy – Born-Haber cycle, Born-Lande equation (no derivation)-factors affecting lattice energy, solubility comparing hydration and lattice energy 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl ₂ , BF ₃ , SO ₂ , SO ₃ , PCl ₅ , SF ₆ , NH ₃ and H ₂ O molecules. 3 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF ₂ , BCl ₃ , NH ₃ , PCl ₅ , SF ₆ , H ₂ O, IF ₅ and IF ₇ . 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy level diagrams of homo diatomic molecules - H ₂ , He ₂ , C ₂ , N ₂ , O ₂ , hetero diatomic molecules – HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H ₂ O and H ₂ S; HCI and HF) ortho- and <i>para</i> -nitro phenols; <i>ortho, meta and para</i> -hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and <th>2</th> <td>– calculation from heat capacity data – problems.</td> <td></td> <td></td>	2	– calculation from heat capacity data – problems.		
2.5 Integral and differential heats of solution and heat of dilution. Image: Chemical Bonding 3.1 Ionic bond – conditions for the formation of ionic bond-characteristic of ionic compounds-Lattice energy – Born-Haber cycle, Born-Lande equation (no derivation)-factors affecting lattice energy, solubility comparing hydration and lattice energy 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl ₂ , BF ₃ , SO ₂ , SO ₃ , PCl ₅ , SF ₆ , NH ₃ and H ₂ O molecules. 3 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF ₂ , BCl ₃ , NH ₃ , PCl ₅ , SF ₆ , H ₂ O, IF ₅ and IF ₇ . 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules-H ₂ , He ₂ , C ₂ , N ₂ , O ₂ , hetero diatomic molecules – HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H ₂ O and H ₂ S; HCl and HF; ortho- and <i>para</i> -nitro phenols; <i>ortho, meta and para</i> -hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion		2.4 Bond energy and resonance energy - calculation from thermo chemical		
Chemical Bonding 3.1 Ionic bond – conditions for the formation of ionic bond-characteristic of ionic compounds-Lattice energy – Born-Haber cycle, Born-Lande equation (no derivation)-factors affecting lattice energy, solubility comparing hydration and lattice energy 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl ₂ , BF ₃ , SO ₂ , SO ₃ , PCl ₅ , SF ₆ , NH ₃ and H ₂ O molecules. 3 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF ₂ , BCl ₃ , NH ₃ , PCl ₅ , SF ₆ , H ₂ O, IF ₅ and IF ₇ . 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy level diagrams of homo diatomic molecules-H ₂ , He ₂ , C ₂ , N ₂ , O ₂ , hetero diatomic molecules – HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H ₂ O and H ₂ S; HCl and HF; ortho- and <i>para</i> -nitro phenols; <i>ortho, meta and para</i> -hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and		data		
 3.1 Ionic bond – conditions for the formation of ionic bond-characteristic of ionic compounds-Lattice energy – Born-Haber cycle, Born-Lande equation (no derivation)-factors affecting lattice energy, solubility comparing hydration and lattice energy 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 		2.5 Integral and differential heats of solution and heat of dilution.		
 of ionic compounds-Lattice energy – Born-Haber cycle, Born-Lande equation (no derivation)-factors affecting lattice energy, solubility comparing hydration and lattice energy 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory – conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 		Chemical Bonding		
 equation (no derivation)-factors affecting lattice energy, solubility comparing hydration and lattice energy Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. Coordinate valency - General characteristics of compounds containing coordinate compounds. VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. MO theory – conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power - hydration ion and 		3.1 Ionic bond – conditions for the formation of ionic bond-characteristic		
 comparing hydration and lattice energy 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power - hydration ion and 		of ionic compounds-Lattice energy – Born-Haber cycle, Born-Lande		
 3.2 Covalent bond – bond polarity- characteristics of covalent compounds-polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules - H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 		equation (no derivation)-factors affecting lattice energy, solubility		
 polarizing power and polarisability- Fajan's rule-deviation from the octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules - H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 octet rule-incomplete octet-expansion of the octet (hyper valence). 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory – conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 3.3 VSEPR theory for BeCl₂, BF₃, SO₂, SO₃, PCl₅, SF₆, NH₃ and H₂O molecules. 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAOenergy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 molecules. 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF2, BCl3, NH3, PCl5, SF6, H2O, IF5 and IF7. 3.6 MO theory – conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules - H2, He2, C2, N2, O2, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H2O and H2S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 3.4 Coordinate valency - General characteristics of compounds containing coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 coordinate compounds. 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 	2		17	CO 2
 3.5 VB theory – assumptions-limitations-principles of hybridization – shapes of simple inorganic molecules – BeF2, BCl3, NH3, PCl5, SF6, H2O, IF5 and IF7. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H2, He2, C2, N2, O2, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H2O and H2S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 	3		15	003
 shapes of simple inorganic molecules – BeF₂, BCl₃, NH₃, PCl₅, SF₆, H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO-energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 H₂O, IF₅ and IF₇. 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO- energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta</i> <i>and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 3.6 MO theory –conditions for the combination of atomic orbitals -LCAO- energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta</i> <i>and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 energy levels of MOs-rules for the filling of electrons in MOs- MO energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta</i> <i>and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 energy level diagrams of homo diatomic molecules- H₂, He₂, C₂, N₂, O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 O₂, hetero diatomic molecules –HF, NO and CO. 3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 of hydrogen bond-effects of hydrogen on properties of substances. (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta</i> <i>and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 				
 (H₂O and H₂S; HCl and HF; ortho- and <i>para</i>-nitro phenols; <i>ortho, meta</i> <i>and para</i>-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and 		3.7 Comparison of VB and MO theories, Hydrogen bonding – types, nature		
and para-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and		of hydrogen bond-effects of hydrogen on properties of substances.		
dimethyl amine). Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and		(H ₂ O and H ₂ S; HCl and HF; ortho- and <i>para</i> -nitro phenols; ortho, meta		
Unit 4 Chemistry of s-Block Elements 4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and		and para-hydroxy benzaldehyde; 2-nitro resorcinol; triethylamine and		
4.1 General characteristics of IA and II A group elements-electronic configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and		dimethyl amine).		
configuration – atomic and ionic radii- ionization potential-metallic character- electro negativity-polarising power- hydration ion and		Unit 4 Chemistry of s-Block Elements		
character- electro negativity-polarising power- hydration ion and				
		character- electro negativity-polarising power- hydration ion and		

6			15	CO6
		Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides		
		Williamson's ether synthesis- Reactivity and Relative strength of C-		
		nitrile & isonitrile formation, thiocyanide and isothiocyanide.		
	6.3	Reactions of halogen derivatives-hydrolysis, nitrite & nitro formation,		
		& S _N 2 reactions- Basicity Vs nucleophilicity.		
		Effect of substrate, base, temperature, solvent and nucleophiles in $S_{\rm N}1$		
	6.2	$S_{\rm N} 1,S_{\rm N} 2$ and $S_{\rm N} i$ reactions – illustration & mechanism with examples –		
		and SOCl ₂ .		
	6.1	Preparation of Halogen derivatives from alcohols using HX, PX ₃ , PX ₅		
	Uni	t 6 Halogen Derivatives		
		oxidation, Diels-Alder reaction and reaction with Benzyne		
		- Importance of 9- and 10- positions. Anthracene –		
	5.4	Orientation and reactivity of Anthracene and phenanthrene		
		- structural elucidation and Haworth synthesis– chemical properties.		
	5.3	Polynuclear hydrocarbons – Orientation and reactivity of naphthalene		
5		o/p ratio	15	CO5
		- orientation and reactivity in mono – and di – substituted benzenes –		
		sulphonation – halogenations – Friedel-Crafts alkylation and acylation		
	5.2	Aromatic electrophilic substitution – mechanism – nitration –		
		antiaromatic compounds - Non benzenoid aromatic compounds.		
	5.1	Aromaticity – Huckel's rule – Examples aromatic ,non-aromatic and		
		Hydrocarbons.		
	Uni	t 5 Chemistry of Benzene and Poly Nuclear Aromatic		
		metals -special position of hydrogen.		
	4.4	Position of hydrogen in the periodic table- resemblance with alkali		
		solubility of sulphates.		
-	т.Ј	sodium bi-carbonate. Comparison of stability of II group carbonates and		
4	43	Chemical Properties and uses of plaster of paris, bleaching powder and	15	CO4
		Chemical Properties, and uses of Li, Na, K, Be, Mg and Ca.		
	- .2	electrolysis of fused magnesium chloride. Physical and		
	42	Extraction- sodium by Down's process-magnesium by		
		complex compounds.		
		hydration energy-flame coloration- diagonal relationship- action with water, halogens and ammonia-formation of hydrides, oxides and		

6	6.4	Polyhalogen derivatives - Geminal and vicinal halides - Preparation of	
		1,1 and 1,2-dichloroethane from acetaldehyde & Phosporous halides,	
		percarbonate and perborates.	
6	6.5	Aromatic nucleophilic substitution $-S_NAr$ and Benzyne Mechanism:	
		KNH ₂ /NH ₃ (or NaNH ₂ /NH ₃)–Addition - elimination and Elimination –	
		addition mechanism.	
6	6.6	Preparation of aryl halides by Schiemann reaction, chloro and bromo -	
		Sandmeyer & Gattermann reactions.	

REFERENCES:

- Principles of Physical Chemistry, Puri, Sharma Pathania 7th edn, Vishal Publishing Co, 2016
- 2. Physical Chemistry: Robert G. Mortimer 3rd edition, Elsevier Academic Press, 2008.
- 3. Advanced Physical Chemistry P.W. Atkins Oxford Press. 1990
- 4. Physical Chemistry 4th Edition, Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi, John Wiley & Sons, Inc.,
- 5. A Text book of Physical Chemistry, A S Negi, S C Anand, , New Age International Publishers, 2007.
- 6. Physical Chemistry, W. J. Moore- Longman Publishing Group; 5th edition (1998)
- 7. A text book of Physical Chemistry, Glasstone, 2nd edition, Macmillan
- 8. A text book of physical chemistry: KL Kapoor (Volume 2 & 3) McGraw Hill Education
- 9. Physical Chemistry, Gilbert W. Castellan, 3rd edition, Narosa
- Puri B.R., Sharma L.R., Kalia K.K Principles of Inorganic chemistry, (23 rd edition), New Delhi, Shoban Lal Nagin Chand * Co 1993.
- Morrison R.T., Boyd R.N., Organic Chemistry, 6th edition, Allyn & Bacon Ltd., Newyork (2006)
- 12. Pillai C. N., Textbook of Organic chemistry for undergraduates, University press (2008).
- Bahl B.S., Arun Bahl, Advanced Organic Chemistry, 12th edition, Sultan Chand and Co., NewDelhi (1997)
- Jain.M.C., Sharma.S.C., Modern Organic Chemistry, Vishal Publication (1967). Bruice Paula Yurkani., Organic Chemistry, 8th Edition, Pearson (1938)
- 15. IGNOU materials for undergraduate courses for all the topics (materials can be downloaded from the following website. (<u>www.egyankosh.ac.in</u> IGNOU school of sciences levels bachelor degree programs current BSC (general): full content download (.zip/.rar)elective course in chemistry(English) view/open)

ASSESSMENT PATTERN

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

COURSE TITLE: CORE III INORGANIC QUALITATIVE ANALYSIS

Course Code :	Credits	: 04
L:T:P:S : 6:0:0:0	CIA Marks	: 40
Exam Hours : 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course, the student will be able to analyse acid radicals and basic radicals in a given inorganic mixture by systematic semimicro qualitative analysis

Course Outcomes: At the end of the Course, the Student will be able to:

CO 1	Identify the interfering and non-interfering anions (Acid radicals) in a given					
	inorganic mixture systematically by semimicro qualitative analysis					
CO 2	Eliminate interfering radical to analyse cations (Basic radicals)					
CO 3	Identify cations in a given mixture from the knowledge of solubility, solubility					
	product and common ion effect					

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО									PSO			
	1	2	3	4	5	6	7	8	1	2	3	4	5	
CO 1	3	3	3	3	3	3	3	3	3	3	3	3	3	
CO 2	3	3	3	3	3	3	3	3	3	3	3	3	3	
CO 3	3	3	3	3	3	3	3	3	3	3	3	3	3	

S.No	CONTENTS OF MODULE	COs
	1.1 Analysis of mixture containing two cations and two anions one of which	
	will be an interfering ion. Semimicro methods using conventional	
	scheme may be adopted.	
	Reactions of the following anions to be studied.	
	1.2 Carbonate, Sulphide, Sulphate, Fluoride, Chloride, Bromide, Nitrate,	
1	Oxalate, Phosphate, Borate, Iodide*, Arsenite, Arsenate*, Chromate*,	CO 1
	Sulphite*, Thiosulphate*, Nitrite*.	CO 2
	1.3 Reactions of the following cations to be studied.	CO 3
	Lead, Silver*, Mercury*, Copper, Tin*, Antimony*, Cadmium,	
	Bismuth, Aluminium, Chromium*, Iron, Manganese, Zinc, Cobalt,	
	Nickel, Calcium, Strontium, Barium, Magnesium and Ammonium.	
	*Not for Examination	

NOTE: Practical Examination will be conducted at the end of II semester.

REFERENCES:

- 1. Vogel, Text book of Inorganic quantitative analysis.
- 2. Inorganic semimicro qualitative analysis, V V Ramanujam, the national publishing company, 3rd edn, 2007
- Basic principles of practical chemistry, Venkateswaran, Veeraswamy and Kulandaivel, S. Chand & Co
- 4. Practical Chemistry- Volume 1, Dr. S. Sundaram, Dr.P.S. Raghavan and Dr. P. Krishnan, Viswanathan publishers.

ASSESSMENT PATTERN

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

CIE- Continuous Internal Evaluation (40 Marks)

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

COURSE TITLE: NME – I DETECTION OF ADULTERANTS IN FOOD PRACTICAL-I

Course Code	:	Credits	:02
L:T:P:S	: 4:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

Learning Objectives:

To impart practical knowledge to detect the common adulterants in food stuffs

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	IIdentify the glassware commonly used in the Chemistry laboratory and know how to properly utilize the glassware (K1)						
CO2	Recognize the colors and adulterants present in foods and beverages (K1)						
CO3	Classify the food additives and discuss their functions (K2)						
CO4	Analyse the food products and identify the adulterants (K4, K1)						

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО								PSO			
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	2	2	1	2	3	1	3	2	2	2	2	3
CO2	3	3	3	2	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	2	3	3	3	3	3	3
CO4	3	3	3	2	3	3	2	3	3	3	3	3	3

S. No.		CONTENTS OF MODULE					
	LIST	COF EXPERIMENTS					
	1.1	Detection of starch in milk.					
	1.2	Detection of neutralizers in milk.					
	1.3	Detection of mashed potato in ghee.					
	1.4	Detection of hidden insect infestation (Ergot) in food grains.					
	1.5	Detection of chalk powder in wheat powder.					
	1.6	Detection of washing soda in sugar.					
	1.7	Detection of sugar solution in honey.		CO1			
	1.8	Detection of coal tar dyes (Malachite green) in green		CO1, CO2,			
1		vegetables/peas	30	CO2, CO3,			
	1.9	Detection of chalk powder in asafoetida.		CO3,			
	1.10	Detection of mineral acid (other than phosphoric acid) in soft		001			
		drinks.					
	1.11	Detection of coal tar dyes (metanil yellow) in food stuffs					
	1.12	Detection of Sodium bicarbonate in Jaggery.					
	1.13	Detection of prohibited colours in edible oil.					
	1.14	Detection of metanil yellow in turmeric powder.					
	1.15	Detection of Rhodamine B in processed foods (sweets/					
		syrup).					

TEXT BOOKS:

1. Lab Manual, Prepared by Department Staff, Department of Chemistry, DGVC

REFERENCE BOOKS:

1. G. D. Gem Mathew, CHEMISTRY IN EVERYDAY LIFE

ASSESSMENT PATTERN

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

CIE- Continuous Internal Evaluation (40 Marks)

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

COURSE TITLE: SIGNIFICANCE OF CHEMISTRY IN EVERYDAY LIFE -- II

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

LEARNING OBJECTIVE:

To impart practical knowledge on the chemistry aspects which plays an integral role in our daily life?

COURSE OUTCOMES:

At the end of the Course, the Student will be able to:

CO1	Determined the pH of the soft drink and shampoo whether the acid or base						
CO2	Identified the soil are acid or base which type of soil are suitable for agriculture						
CO3	Determined the quality of in various commercial available milk product						
CO4	Understand adsorption concept involved in activated charcoal						
CO5	Redox reaction and Equilibrium reaction and non equilibrium reaction						
CO6	Determination of unknown glucose solution using clock reaction						
CO7	Estimation of iron in adulterated tea powder (iron fillings) and Thin layer						
	chromatographic analysis of stic pens/ gel pens.						

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО								PSO					
0/10/150	1	2	3	4	5	6	7	8	1	2	3	4	5		
CO1	3	3	3	3	1	2	2	3	3	2	3	2	2		
CO2	3	2	3	2	1	3	3	2	3	3	2	2	3		
CO3	3	3	3	3	1	2	3	2	2	3	2	3	2		
CO4	3	2	2	3	1	3	2	3	3	2	2	2	2		
CO5	3	3	3	2	1	2	3	2	2	3	2	2	2		
CO6	3	2	2	3	1	2	2	3	3	3	3	2	2		
CO7	3	3	3	3	1	3	3	3	3	2	2	2	3		

S.NO	CONTENTS OF MODULE	COs
1	Electrochemistry: Determination of pH of soft drinks using pH paper.	CO1
2	Electrochemistry: Determination of pH of shampoos using pH paper.	CO1
3	Soil chemistry: Testing Soil pH Using Vinegar and Baking Soda.	CO1
4	Soil chemistry: Testing Soil pH Using Red cabbage.	CO2
5	Surfactant science : make a milk rainbow	CO3
6	Surface chemistry: Adsorption of metal ion (iron) using activated charcoal.	CO4
7	Reversible Redox reaction: blue bottle reaction explains the concept of equilibrium.	CO5
8	Redox reaction: Determination of unknown glucose solution using clock reaction.	CO6
9	Food chemistry: Estimation of iron in adulterated tea powder (iron fillings).	CO7
10	Forensic science: Thin layer chromatographic analysis of stic pens/ gel pens.	CO7

REFERENCES

- 1. <u>http://chemistry.about.com/od/chemistry101/f/importanceofchemistry.htm</u> Chemistry is present in every aspect of life, and here we can see a few examples. There are articles about the chemistry of everyday life, and also a few about physics, as it's also present in our daily life
 - 2. <u>http://www.novapdf.com</u>

ASSESSMENT PATTERN

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

ESE- Semester End Examination (100 Marks; weightage 60%)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

SCHEME OF II YEAR B.Sc. PROGRAM

				r	MA					
SEM	PART	TITLE OF THE PAPER	INSTRUCTION HOURS/WEEK	DURATION OF EXAM	CIA	ESE	TOTAL	CREDITS		
SEMESTER-III										
	Ι	Language III	6	3	40	60	100	3		
	II	English III	6	3	40	60	100	3		
	III	Core Paper IV General Chemistry III	6	3	40	60	100	5		
III	III	Allied Paper -Chemistry– I (for Mathematics and Physics- Major)	5	3	40	60	100	5		
	III	Allied Paper -Chemistry– I (for Botany- Major)	5	3	40	60	100	5		
	V	Environmental Studies		3	40	60	100			
	V	Soft Skill		3	40	60	100	3		
		TOTAL CREDITS						24		
		SEMESTE	R-IV							
	Ι	Language Paper IV	6	3	40	60	100	3		
	II	English Paper IV	6	3	40	60	100	3		
	III	Core Paper V General Chemistry IV	6	3	40	60	100	5		
	III ◆	Core Paper VI Volumetric Analysis and Inorganic preparations- Practical II	3	3	40	60	100	4		
		Summer Internship						2		
IV	III	Allied Paper -Chemistry– II (for Mathematics and Physics- Major)	5	3	40	60	100	5		
	III	Allied Paper -Chemistry– II (for Botany- Major)	5	3	40	60	100	5		
	III	Practical-Allied Chemistry (for Mathematics, Physics and Botany- Major)	3	3	40	60	100	4		
	V	Environmental Studies		3	40	60	100	2		
	V	Soft skill		3	40	60	100	3		
		TOTAL CREDITS						36		

Course Co	ode :	Credits : 04	
L:T:P:S	: 4:0:0:0	CIA Marks : 40	
Exam Hou	ırs : 03	ESE Marks : 60	

COURSE TITLE: CORE IV - GENERAL CHEMISTRY- III

LEARNING OBJECTIVE:

To impart basic knowledge in thermodynamics, partial molar properties, *p*- block elements, and organic derivatives.

Course Outcomes: At the end of the Course, the Student will be able to:

	of II law, Carnot cycle, concept of entropy, including Clausius inequality, Gibb's free
01	
	energy, Helmholtz free energy, Gibb's-Helmholtz equations and its applications.
CO2 E	Explain the concept of partial molar properties.
E	Explain the different laws for ideal solution (Raoult's law & Henry's law), discuss
CO3 at	bout non ideal solution, azeotropes, partially miscible liquid systems
D	Discuss the various colligative properties and methods of determining them.
CO4 D	Discuss about partially miscible liquid systems (phenol-water, water-triethylamine,
U04 w	vater-nicotine) and partition coefficient
CO5 E	Explain the general periodic trend, preparation and properties of electron deficient
b	boron compounds, difference between carbon and silicon from the rest of the family.
E	Explain types of oxides and oxyacids, their structure and reactivity of nitrogen,
02	oxygen.
CO6 D	Discuss the periodic properties and reactivity of halogen family.
E	Explain the properties of interhalogen compounds and pseudo halogens.
E	Explain the periodic position of noble gases, structure and properties of Xenon
с	compounds
CO7 E	Explain the methods of preparation and properties of aliphatic alcohols, phenols and
po po	oolyhydric phenols.
CO8 ^E	Explain the classification, preparation and properties of alkyl and aryl ethers.
D	Discuss the preparation, properties of epoxides and importance of crown ethers.
CO9 E	Explain the reactivity of carbonyl compounds, preparation, oxidation and reduction of
al	ldehydes and ketones.
CO10 D	Discuss the preparation of dialdehydes and diketones.

CO/PO/PSO	РО								PSO					
0/10/150	1	2	3	4	5	6	7	8	1	2	3	4	5	
CO1	3	3	3	2	1	2	1	3	2	3	2	3	2	
CO2	3	3	3	1	2	2	1	3	3	2	2	3	3	
CO3	3	3	3	1	1	2	2	3	2	3	2	3	2	
CO4	3	3	3	1	2	2	3	3	3	2	2	3	3	
CO5	3	3	3	3	1	2	2	3	3	2	2	3	3	
CO6	3	3	3	2	1	2	1	3	2	3	2	3	2	
CO7	3	3	3	3	2	3	3	3	3	2	2	3	3	
CO8	3	3	3	3	1	1	1	3	2	3	2	3	2	
CO9	3	3	3	1	1	1	1	2	3	2	2	3	3	
CO10	3	3	3	3	2	2	1	3	2	3	2	3	2	

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

S.No		CONTENTS OF MODULE	Hrs	COs
	Uni	t 1 Thermodynamics 3		
	1.1	Second Law of Thermodynamics: Need of the law , Kelvin plank		
		and Clausius statements of second law. Carnot's cycle and		
		efficiency of Carnot engine, Carnot's theorem, Thermodynamic		
		scale of temperature.		
	1.2	Concept of Entropy: qualitative relationship between entropy		
1		change and unavailable heat or degraded energy - entropy change,	15	CO1,
1		randomness, disorderness and irreversibility. Clausius inequality-	13	CO2
		proof, Entropy criterion for spontaneous and equilibrium processes		
		in isolated systems, Entropy as a function of P, V and T, Entropy		
		changes during phase changes , Entropy of mixing and entropy		
		change of chemical reactions.		
	1.3	Free energy: Gibb's free energy (G) and Helmholtz free energy (A),		
		practical relevance of ΔG and ΔA , Free energy criterion for		

	 spontaneous and equilibrium process. Variation of A and G with P, V and T, Gibb's Helmholtz equation and its applications, Thermodynamic equation of state-coefficient of thermal expansion (α) and coefficient of compressibility(β), derivation of thermodynamic parameters from α and β, Maxwell's relations. 1.4 Systems of variable composition: Partial molar quantities, Chemical potential, Variation of chemical potential with T, P and Gibb's - Duhem equation. Unit 2 Solutions 2.1 Ideal solutions 		
2	 2.1 Ideal solutions: Solutions of gases in liquids-Henry's law, solutions of liquids in liquids- Binary liquid mixtures-Ideal solutions, Raoult's law, Vapour pressure Vs composition curves 2.2 Non ideal solutions: Deviations from ideal behaviour- non ideal solution- temperature Vs vapour pressure curves- azeotropic mixture - azeotropic distillation. 2.3 Dilute solutions: colligative properties- thermodynamic derivation of lowering of vapour pressure, elevation of boiling point and depression of freezing point- osmotic pressure – abnormal colligative properties- calculation of molecular weight –vant Hoff factor. Critical solution temperature-phenol-water system, Nicotine - Water system -Triethylamine-water system. Effect of impurity on CST. 2.4 Partially miscible liquids-upper critical solution temperature (UCST) and lower critical solution temperature (LCST)- Immiscible liquids-Nernst distribution law – Thermodynamic derivation and applications. 	15	CO3, CO4
3	 Unit 3 p-Block Elements 1 General periodic trend-electronic configuration-oxidation state- atomic and ionic radii-ionisation energy-metallic character-inert pair effect-lewis acid character and nature of oxides. Boron family: periodic discussion-similarity and dissimilarity of boron with aluminium - diagonal relationship of boron with silicon. Electron deficient boron compounds- preparation, properties, structure and uses of Diborane, Borazole and Boron nitride. 	15	CO5

	Carbon family: periodic discussion- similarity-electronic		
	configuration-valency- oxidation state-formation of complexes-		
	allotropy (diamond and graphite only) -gradation in properties-		
	electropositive character, nature of oxides, nature of hydrides, nature		
	of halides.		
	Difference of carbon and silicon from the rest of the family -		
	catenation.		
	Unit 4: p-Block Elements 2		
	4.1 Nitrogen family: Periodic trend-Similarity- electronic configuration,		
	valency, oxidation states, allotropy, characteristics of oxides,		
	oxyacids, hydrides, and halides		
	4.2 Unique feature of nitrogen from the rest of the family-valency-		
	oxidation state- Preparation, properties, structures and uses of		
	hydrazine, hydroxylamine and hydrazoic acid. Structure, properties		
	and uses of PCl ₃ , PCl ₅ , P ₄ O ₆ , P ₄ O ₁₀ , H ₃ PO ₂ , H ₃ PO ₃ and H ₃ PO ₄ .		
	Application of the covalency maxima to halides of N and P-		
	Maximum covalency rule- concept of overlapping of atomic orbitals.		
	4.3 Oxygen family: Periodic discussion-Similarity- electronic		
	configuration, valency, oxidation states, allotropy, atomicity,		
	catenation, characteristics of oxides, oxyacids, hydrides, and halides		
	(dihalides, tetrahalides, hexahalides, dimeric monohalides) Abnormal	1.5	GOL
4	behavior of oxygen. Oxides of sulphur – structure aspects of sulphur	15	CO6
	dioxide and sulphur trioxide. Peracids of sulphur- Caro's acid and		
	Marshall's acid-preparation, properties structure and uses.		
	4.4 Halogen family: Periodic discussion-Similarity- electronic		
	configuration- electronegativity, electron affinity, oxidiation states		
	and oxidizing power - atomicity, metallic and non-metallic character-		
	combination with hydrogen-combination with metals and non-metals-		
	action with water-action with alkalies - oxyacids. Peculiarities of		
	fluorine, basic nature of iodine.		
	4.5 Interhalogen compounds: AX type- ClF, BrF; AX ₃ type- ClF ₃ , BrF ₃ ,		
	ICl ₃ ; AX ₅ type- ClF ₅ , BrF ₅ , IF ₅ ; AX ₇ type- IF ₇ -properties and		
	structure.		
	4.6 Pseudo halogen compounds: Preparation and properties of cyanogen		
	and thiocyanogen. Comparison of halogens with pseudo halogens.		

 cyclic ethers by acid catalyzed dehydration of alcohols- Importance of cleavage of alkyl and aryl ethers to give alcohol. 5.7 Preparation of epoxides - using m-CPBA - Cleavage of epoxides to 1, 2 – diol. Conversion of epoxide to alcohol using RMgX (Regioselectivity) and LAH- Crown ethers - 18 –
--

6	 Unit 6 Carbonyl compounds 6.1 Carbonyl compounds –polarization and reactivity of carbonyl groups- acidity of alpha hydrogen- Nucleophilic addition – addition elimination mechanism. 6.2 Aldehydes and ketones - Preparation –from carboxylic acid and MnO, from salts of carboxylic acids, By reaction of acid halides with Lithium dimethyl cuprate, dialkyl cadmium reagents, by ketonic hydrolysis of acetoacetic ester(AAE) with dil acids, from nitriles , Benzaldehyde by Etard reaction. 6.3 Oxidation of aldehydes and ketones - Tollen's, Fehling's and Benedict reagents. MPV reductions. Clemmensen reduction and Wolff Kishner reduction -Reaction of acetone with Mg-Hg, Aldol Condensation, Cannizzaro's reaction, Wittig reaction, Benzoin condensation. 6.4 Dialdehydes – Preparation of glyoxal by oxidation of glycol - Succinaldehyde - preparation from propene via hexa 1,5-diene - formylacetone (acetoacetaldehyde) from ethyl formate and acetone (Claisen condensation) 6.5 Diketones – Preparation from acetoacetic ester (AAE) - 1, 2 - Dimethyl glyoxal (diacetyl) - preparation by oxidation of ethyl methyl ketone with SeO₂ – Acetylacetone (1,3) - by Claisen condensation of ethylacetate and acetone. 	15	CO9, CO10	
---	--	----	--------------	--

REFERENCE BOOKS:

- 1. Principles of Physical Chemistry, Puri, Sharma Pathania 7th edn, Vishal Publishing Co, 2016
- 2. Physical Chemistry: Robert G. Mortimer 3rd edition, Elsevier Academic Press, 2008.
- 3. Puri B.R., Sharma, L.R., Kalia, K., Principles of Inorganic Chemistry 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993)
- 4. Lee J. D., Concise Inorganic Chemistry, UK, Blackwell science (2006)
- 5. Madan, R.D., Tuli, G.D Malik.W.U. Principles of Inorganic Chemistry, S.Chand, 1999.
- 6. Inorganic Chemistry III Edition, by Miessler, G. L. and Tarr, D. A. 2004.
- Morrison R.T., Boyd R.N., Organic Chemistry, 6th edition, Allyn & Bacon Ltd., Newyork (2006)

- Bahl B.S., Arun Bahl, Advanced Organic Chemistry, 12th edition, Sultan Chand and Co., NewDelhi (1997)
- 9. T. W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder ., Organic Chemistry, 1st edition, Wiley(2017)
- 10. Janice Gorzynski Smith., Organic Chemistry, 5th Edition, New Delhi, Mc-Graw-Hill International Book Company, New Delhi (2010)
- 11. Bruice Paula Yurkani., Organic Chemistry, 8th Edition, Pearson (2010)
- 12. Finar I.L., Organic Chemistry, Vol 1, 6th edition, Addison Wesley Longman Ltd., England (1996)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

COURSE TITLE: CORE V – GENERAL CHEMISTRY IV

Course Code :	Credits	: 05
L:T:P:S : 6:0:0:0	CIA Marks	: 40
Exam Hours : 03	ESE Marks	: 60

LEARNING OBJECTIVES:

To impart basic knowledge in thermodynamics, phase study, d- block elements, coordination compounds and organic derivatives.

Course Outcomes: At the end of the Course, the Student will be able to:

CO 1.	To contribute the first and second law of thermodynamics to equilibrium of reactions and to discuss the concept of entropy. [K3]
CO 2	To deduce the phase rule and interpret the same for various binary and ternary mixture[K4]
CO 3.	To infer the periodic properties and discuss the concentration of ores for the extraction of metals. [K5]
CO 4.	To distinguish the optical and geometrical isomerism of co-ordination complexes[K3]
CO 5.	To discuss the preparation and properties of carboxylic acids.[K3]
CO 6.	To discuss the amines, nitro and heterocyclic compounds.[K3]

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO					P	0							PSO		
0/10/150	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	3	3	3	2	3	2	2	2	3	3	3	3	3	2
CO2	3	3	2	3	2	3	2	2	2	3	3	3	3	3	2
CO3	3	3	3	3	2	3	2	3	2	3	3	3	2	3	2
CO4	3	3	3	2	2	3	2	2	2	3	3	3	2	3	2
CO5	3	3	3	3	2	3	3	3	2	3	3	3	2	3	2
CO6	3	3	3	2	2	3	2	2	2	2	3	3	2	3	2

Sl NO	CONTENTS OF MODULE	Hrs	Cos
1	 Unit 1: Applications Of Thermodynamics To Equilibrium 1.1 Chemical equilibrium –thermodynamic derivation of equilibrium constant- equilibrium constant for various homogeneous and heterogeneous equilibria. 1.2 The relationship between Equilibrium constant and free energy change – Vant Hoff reaction isotherm –The direction of chemical change. 1.3 K_p and K_c for the formation and dissociation equilibria of NH₃, CaCO₃ and PCl₅ 1.4 Variation of equilibrium constant Kp and Kc with temperature (Vant Hoff equation or vant hoff isochore) – applications. Variation of equilibrium constants with pressure and catalyst and the principle of microscopic reversibility. 1.5 Le-Chatelier principle-Factors affecting chemical equilibrium (Concentration, temperature, pressure and addition of inert gases) –a case study of synthesis of ammonia 1.6 Third Law of Thermodynamics: Nernst heat theorem – Statement of III law – Evaluation of absolute entropy from heat capacity data with examples(N₂ and O₂). Exception to III law-The concept of residual entropy and its calculation from Boltzman law for ortho and para hydrogen, CO, N₂O and ice. 	15	CO1
2	 Unit 2: Phase Study 2.1 Definition of terms in the phase rule –phase, components and degrees of freedom with examples. 2.2 Equilibrium- physical equilibrium of one component system – Clapeyron equation and Clausius – Clapeyron equation for various phase equilibria. 2.3 Derivation of phase rule- Phase diagram and Application of phase rule to one component system- water and CO₂ – super cooling, sublimation. 2.4 Reduced phase rule for condensed systems- Phase diagram of two component systems – solid liquid equilibria, simple eutectic (Pb- 	15	CO2

	Ag & Bi-Cd), desilverisation of lead –Compound formation with congruent melting point. (Mg-Zn) and incongruent melting point (Na- K). Freezing mixtures – FeCl ₃ -H ₂ O and CuSO ₄ -H ₂ O systems.		
3	 Unit 3: d-Block Elements 3.1 Definition of a transition element-General periodic trend- study of First transition series- Electronic configuration, metallic character, atomic radii, standard electrode potential, stability of different oxidation states of transition metal ions in aqueous solution, reactivity, oxidation states, formation of coloured complexes, magnetic properties, catalytic properties, formation of non-stoichiometric compounds, interstitial compounds, alloy formation. Coinage metals-Cu, Ag and Au. 3.2 Metallurgy : Definition-Classification of ores- metallurgical processes-: concentration of the ore-hand picking, gravity separation (Wifley table method, hydraulic classifier), magnetic separation; calcinations, roasting; Ellingham diagram-reduction to free metalsmelting- reduction by controlled heating in air (auto reduction)-reduction by aluminium. Electrometallurgy-Amalgamation method, hydrometallurgy. Fluxes- acidic and basic. Refining of metals-Zone refining, electrolytic refining, vapour phase, <i>van Arkel</i> process, vacuum arc furnace refining. 3.3 Extraction of titanium from Rutile and platinum from Sperrylite (Ni ore). Alloys and uses of Ti and Zr. 	15	CO3
4	 Unit 4: Introduction to Coordination Chemistry 4.1 Types of ligands- IUPAC Nomenclature- Structural Isomerism- ionization, hydrate, linkage, ligand and coordination isomerism. 4.2 Stereoisomerism-geometrical and optical isomerism of four and six coordinated complexes. Geometrical Isomerism: four coordinated complexes- [MA₂B₂]^{n±}, [MA₂BC]^{n±}, [MABCD]^{n±}, [M(AB)₂]^{n±}. Six coordinated complexes-[MA₄B₂]^{n±}, [MA₄BCD]^{n±}, [MA₄BCD]^{n±}, [M(AB)₃]^{n±}, [MABCDXY]^{n±}, [M(AA)₂ (B)₂]^{n±}, [M(AA)₂ BC]^{n±}, [M(AB)₃]^{n±}. (where (AA) is symmetrical bidentate ligand and (AB) is unsymmetrical bidentate ligand) 	15	CO4

	4.3 Optical Isomerism: four coordinated complexes- $[M(AB)_2]^{n\pm}$.		
	Six coordinated complexes- $[M(AA)_3]^{n\pm}$, $[M(AA)_2 X_2]^{n\pm}$, $[M(AA)_2 X_2]^{n\pm}$		
	$[XY]^{n\pm}, [M(AA) X_2 Y_2]^{n\pm}.$		
	UNIT 5: Carboxylic Acids		
	5.1 Preparation of monocarboxylic acids- by oxidation of alkenes		
	with KmnO ₄ , by oxidation of alkyl benzenes, preparation using		
	diazomethane, Arndt-Eistert synthesis, conversion of acid to acid		
	chlorides, alcohols, Anhydrides, Esters and Amides.		
	5.2 Reactions of carboxylic acids – Esterification by diazomethane,		
	Hell Volhard Zelinski reactions.		
	5.3 Active methylene compounds – Preparation and Synthetic		
	applications of diazomethane . AAE and cyanoacetic ester.		
5	5.4 Unsaturated acids: Preparation of Acrylic acid from propanoic	15	CO5
	acid, crotonic acid from β - 41 lectrop butyric acid , Cinnamic acid		
	from malonic ester and cyanoacetic ester.		
	5.5 Preparation of 41lectrop acids – Reformatsky reaction – action		
	of heat on α , β , γ & δ 41 lectrop acids.		
	5.6 Dicarboxylic acids – Nomenclature – General preparation of		
	dicarboxylic acids – Succinic and Glutaric acids - Preparation of adipic		
	acid from cyclohexanone- preparation of phthalic acid from		
	naphthalene. Conversion of adipic acid, phthalic acids to their		
	anhydrides.		
	UNIT 6: Organic Nitrogen compounds and Heterocyclic		
	compounds		
	6.1 Amines –Classification – Preparation of amines from acids		
	(Schmidt reaction)-from alkyl halides, Gabriel's Phthalimide		
	synthesis, Hofmann Bromamide reaction -Reactions of amine -		
6	Distinction between primary, secondary and tertiary amines -	10	
6	Carbylamine test, Hinsberg test, with HNO ₂ , Schotten – Baumann	12	
	Reaction.		
	6.2 Nitro compounds – Preparation – Difference between alkyl		
	nitrites and nitro alkanes, distinction between primary, secondary		
	and tertiary nitro compounds. Reduction of nitrobenzene in acidic		
	and alkaline medium.		
L			

6.3 Five membered Heterocyclic compounds – Furan, Pyrrole, and thiophene – Hybridization, Basicity/Acidity, Orientation and aromaticity, Preparation, Reactivity towards 42lectrophilic and nucleophillic substitution reactions – Diels alder reaction with furan.
6.4 Six-membered heterocycles – Pyridine-Aromatic character, structure, Hybridization, basicity/acidity. Orientation and reactivity- Preparation – electrophilic and nucleophilic substitution reaction, Zeigler alkylation. Pyridine-N- oxide, preparation and importance.

References:

- 1. Principles of Physical Chemistry, Puri, Sharma Pathania 7th edn, Vishal Publishing Co, 2016
- 2. Physical Chemistry: Robert G. Mortimer 3rd edition, Elsevier Academic Press, 2008.
- 3. Advanced Physical Chemistry W. Atkins 8th ednOxford Press. 2009
- 4 Physical Chemistry 4th Edition, Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi, John Wiley & Sons, Inc.,
- 5. A Text book of Physical Chemistry, A S Negi, S C Anand, , New Age International Publishers, 2007.
- 6. Physical Chemistry, W. J. Moore- Longman Publishing Group; 5th edn (1998)
- 7. A textbook of Physical Chemistry, Glasstone, 2nd edition, Macmillan
- 8. A text book of physical chemistry: KL Kapoor (Volume 2,3) McGraw Hill Education (Thermodynamics)
- 9. Physical Chemistry, Gilbert W. Castellan, 3rd edition, Narosa (Thermodynamics)
- 10. Phase rule and its applications, Suruchi, Sheza Zaidi
- Puri B.R., Sharma, L.R., Kalia, K., Principles of Inorganic Chemistry 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993)
- 12. Lee J. D., Concise Inorganic Chemistry, UK, Blackwell science (2006)
- 13. Madan, R.D., Tuli, G.D Malik.W.U, Principles of Inorganic Chemistry, S.Chand, 1999.
- 14. Inorganic Chemistry III Edition, by Miessler, G. L. and Tarr, D. A. 2004.
- Morrison R.T., Boyd R.N., Organic Chemistry, 6th edition, Allyn & Bacon Ltd., Newyork (2006)
- 16. Bahl B.S., Arun Bahl, Advanced Organic Chemistry, 12th edition, Sultan Chand and Co., NewDelhi (1997)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

COURSE TITLE: CORE VI - VOLUMETRIC AND PREPARATION PRACTICAL

LEARNING OBJECTIVE:

To impart basic knowledge in estimation of acid- base, various metal ions by volumetric analysis, preparation of simple inorganic compounds.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Estimate the amount of metal ions like copper, silver, zinc, calcium present in the solution
CO2	Prepare various chemical compounds such as Ferrous ammonium sulphate, sodium thiosulphate pentahydrate.
CO3	Show the preparation of various concentrations of solutions from stock solution.
CO4	Differentiate the chemical substances as acid, base, oxidizing and reducing agents.
CO5	Assess the choice of indicators according to the pH involved in the titrations.
CO6	Explain the volumetric laws and concept of normality, molarity, molality, and equivalent mass

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES

CO/PO/PSO	РО								PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	1	2	2	2	2	3	3	3	3	3
CO2	3	3	3	1	3	2	2	2	3	3	3	2	2
CO3	3	3	3	1	2	2	2	2	3	3	2	2	2
CO4	3	2	3	1	3	2	2	2	3	3	3	3	3
CO5	3	2	2	3	2	2	2	2	3	3	3	2	2
CO 6	3	2	2	1	2	2	2	2	3	3	2	2	2

S. NO	CONTENTS OF MODULE	Hrs	COs				
	Acidimetry and Alkalimetry						
	1. Estimation of sodium hydroxide using standard Sodium carbonate.						
	2. Estimation of borax using standard Sodium carbonate.						
1	3. Estimation of mixture of Sodium hydroxide and Sodium carbonate	15	CO1				
	using standard Sodium carbonate*.						
	4. Estimation of Oxalic acid using standard Potassium hydrogen						
	phthalate.5. Estimation of total hardness of water*.						
2	Permanganometry	15	CO2				
2	6. Estimation of Ferrous ammonium sulphate using standard Oxalic acid.	15	02				
	7. Estimation of Calcium using standard oxalic acid solution.						
2	Iodometry	15	CO 2				
3	8. Estimation of Cu (II) sulphate using standard Potassium dichromate.	15	CO3				
	9. Estimation of Potassium dichromate using standard Cu (II) sulphate.						
	Argentometry						
	10. Estimation of Chloride by Mohr's method.						
	Argentometry		GO 4				
4	11. Estimation of Chloride by Mohr's method.	15	CO4				
	Complexometry						
	12. Estimation of Magnesium sulphate using EDTA as link and Zinc						
	sulphate as standard						
	Dichrometry						
	13. Estimation of Ferrous ion using standard Oxalic acid						
5	Precipitation Titrations	15	CO5				
	14. Estimation of Zinc using standard Potassium ferrocyanide.						
	15. Estimation of Barium by back titration method*.						

REFERENCE BOOKS:

- 1. Vogels Text Book of Inorganic Quantative Analysis.
- Basic Principles of Practical Chemistry by Venkateswaran, V.; Veeraswamy, R.; Kulandaivelu, A. R. 1993, Sultan Chand & Sons.
- 3. Practical Chemistry for UG by Sundaram, Krishnan and Raghavan.

ASSESSMENT PATTERN

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

SCHEME OF III YEAR B.Sc. PROGRAM

			7 14	[T_	MA	X. MA	ARKS	
SEM	PART	TITLE OF THE PAPER	INSTRUCTION HOURS/WEEK	DURATION OF EXAM	CIA	ESE	TOTAL	CREDITS
		SEMESTE	R-V					1
	III	Core Paper VII Organic Chemistry I	5	3	40	60	100	4
	III	Core Paper VIII Inorganic Chemistry I	5	3	40	60	100	4
V	III	Core Paper IX Physical Chemistry I	5	3	40	60	100	4
V	III	Elective Paper I–AnalyticalChemistryORPharmaceutical Chemistry	4	3	40	60	100	5
	IV	Value Education		3	40	60	100	2
		TOTAL CREDITS						19
		SEMESTE	R-VI					1
	III	Core Paper X Organic Chemistry II	5	3	40	60	100	4
	III	Core Paper XI Inorganic Chemistry II	5	3	40	60	100	4
	III	Core Paper XII Physical Chemistry II	5	3	40	60	100	4
	III	Elective Paper II –Applied Chemistry OR Industrial Chemistry	4	3	40	60	100	5
	III	Elective III – Physical chemistry practical (OR) Polymer chemistry						

III	Elective IV - Gravimetric Analysis and Inorganic complex Preparation- Practical IV	5	6	40	60	100	5
III	Elective Paper V- Organic Analysis and preparation- Practical V	3	3	40	60	100	5
II	SkillEnhancementCourseAnalyticalChemistryPractical	5	3	40	60	100	5
II	Seminar (Internal)						02
п	basic senses (OR) Food chemistry						
	Extension activities						
	TOTAL CREDITS						33

* Student should select <u>three Elective</u> subjects such that one elective subject in Fifth semester and two elective subjects in the sixth semester. (The elective papers are: Analytical Chemistry, Pharmaceutical Chemistry, Applied Chemistry, Industrial Chemistry, and Polymer Chemistry)

* Examination will be conducted at the end of the Semester

COURSE TITLE: CORE VII - ORGANIC CHEMISTRY-I

Course Code:	Credits:04
L:T:P:S:	CIA Marks:40
Exam Hours:03	ESE Marks:60

LEARNING OBJECTIVES:

This course will expose to the students, the areas of organic stereochemistry and spectroscopy. It will also provide an elementary idea about molecular rearrangements and organic dyes.

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Predict the structure and stereochemistry of simple organic compounds and analyse
	optical isomerism in compounds with chiral centre, chiral axis and chiral plane.
CO2	Differentiate geometrical and optical isomerism and devise conformational analysis of
	acyclic and cyclic systems.
CO3	Infer the fundamental laws of spectroscopy and selection rules; Interpret electronic
	spectroscopy and Infrared Spectra of organic molecules.
CO4	Illustrate the principle and instrumentation of NMR and to examine the spectra of
	simple organic molecules.
CO5	Deduce the mechanism of molecular rearrangements and cite the importance of
	organic dyes.

MAPPING OF COURSE OUTCOMES TO PROGRAMME OUTCOMES:

CO/PO/PSO	PO)							PSC	PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5	
CO1	3	2	3	1	2	2	2	3	3	3	3	3	2	
CO2	3	2	3	3	2	2	2	3	3	3	3	3	2	
CO3	3	3	3	3	2	2	2	2	3	3	3	3	3	
CO4	3	3	3	3	2	2	2	3	3	3	3	2	3	
CO5	3	2	3	2	2	2	3	3	3	3	2	3	2	

S.No.	CONTENTS OF MODULE	Hrs	COs
	Stereochemistry – I		
1	 1.1 Isomerism, stereoisomerism-Classification– Interconversion of Wedge Formula, Newman, Sawhorse and Fischer representations. Conformation-definition, difference between configuration and conformation- Symmetry, asymmetry, dissymmetry, Elements of symmetry, chiral centre, stereogenic centre, chiral axis, chiral plane. 1.2 Optical isomers- Enantiomers, Diastereomers and Meso compounds. Relative and absolute configuration - Threo and erythro isomers; D and L; CIP Rules: R / S (upto 3 chiral carbon atoms). 1.3 Optical isomerism - Optical activity and chirality– Plane and circularly polarized light Criteria for optical activity – Necessary and sufficient conditions. Diastereomers – distinguishing between enantiomers and diastereomers. 1.4 Optical isomerism in compounds with chiral axis and chiral plane - allenes, spiranes Alkylidene cycloalkanes - Adamantanes and biphenyl- criteria for exhibiting chirality in each case-atropisomerism 1.5 Definition of ORD and CD 	15	
2	 Stereochemistry II 2.1 Geometrical isomerism: Explanation and examples with respect to carbon-carbon, carbon-hetero atom, hetero atom-hetero atom, acyclic, conjugated and cyclic compounds. Designation as Cis-Trans and E- Z notation. 2.2 Configuration of geometrical isomers – Identification of geometrical isomers using physical and chemical methods. 2.3 Conformational analysis - acyclic systems-substituted ethane, n-propane, n-butane- and cyclic systems-mono- and di-substituted cyclohexanes-Stability and optical activity of mono and disubstituted methyl cyclohexanes. 2.4 Asymmetric synthesis – partial asymmetric synthesis-Methods-with optically active Reagents, with optically active substrates- Absolute asymmetric synthesis with circularly polarized light.(Elementary idea only) 2.5 Methods of Resolution and Racemisation-Walden inversion – Evidences. 	15	

	UV – VIS and IR spectroscopy					
	3.1 UV- Visible spectroscopy – Origin of spectra, interaction of					
	radiation with matter, fundamental laws of spectroscopy and selection					
	rules, Beer-Lambert's law- calculations involving Beer-Lambert's					
	law					
	3.2 Basic principles of instrumentation for single and double beam					
	instrument - block diagrams - description of components- Types of					
	source, monochromator and detector- Choice of solvent.					
	3.3 Electronic transitions, $\lambda \max$ & $\varepsilon \max$, chromophore,					
3	auxochrome, bathochromic and hypsochromic shifts. Application of	15				
	electronic spectroscopy and Woodward Hoffmann rules for					
	calculating λ max of conjugated dienes and α , β – unsaturated enones.					
	(acyclic systems only)					
	3.4 IR spectrometry - Basic principles of instrumentation for					
	single and double beam instrument , Block Diagram, Types of source,					
	monochromator & detector, sampling techniques(basic idea).					
	3.5 Infrared radiation and types of molecular vibrations (normal					
	modes of vibration), functional group and fingerprint region.					
	Application of IR spectra in determining functional groups.					
	Nuclear Magnetic Resonance spectroscopy (NMR)					
	4.1 Principle- NMR active nuclei and percentage of abundance.					
	4.2 Energy levels and Basic NMR equation.					
	4.3 Instrumentation – block diagram, NMR solvents - Use of TMS					
	as reference					
4	4.4 Chemical shift – Shielding and deshielding, upfield and down	15				
	field-Calculation of δ , spin – spin coupling, coupling constant,					
	Pascal's triangle – significance.					
	4.5 Analysis of spectrum of ethanol, acetone, acetaldehyde,					
	ethylene, acetylene, benzene.					
	Molecular Rearrangements and Dyes					
	5.1 Molecular rearrangements- Classification – General					
	mechanistic treatment of nucleophilic, Electrophilic and free radical					
5	rearrangement.	15				
	5.2 Mechanism of the following rearrangements - Pinacol-					
	pinacolone (only open chain compounds), dienone-phenol					
	princesione (only open chain compounds), dienone-pilelioi					

rearrangement. Wagner –Meerwein, Hofmann, Curtius, Lossen and	
Schmidt rearrangements – Beckmann and Benzidine rearrangements.	
5.3 Dyes - Phenolphthalein , methyl orange, congo red, bismark	
brown, malachite green, crystal violet, fluorenscein and indigo –	
Characterization, properties, structure and uses.	

REFERENCES & TEXT BOOKS

- 1. Finar I.L., Organic Chemistry, Vol. 1 & 2, 6th edition, Addison Wesley Longman Ltd., England (1996)
- Morrison R.T., Boyd R.N., Organic Chemistry, 6th edition, Allyn & Bacon Ltd., Newyork (2006)
- Bahl B.S., Arun Bahl., Advanced Organic Chemistry, 12th edition, Sultan Chand and Co., New Delhi (1997)
- 4. Pine S.H., Organic Chemistry, 4th edition, Mc-Graw-Hill International Book Company, New Delhi (1986)
- 5. Seyhan N. Ege., Organic Chemistry, Houghton Mifflin Co., New York (2004)
- 6. William Kemp., Organic Spectroscopy, 3rd edition, Red globe press (1991)
- Eliel E., Wilen S.H., Mander L.N., Stereochemistry of Carbon compounds, 2nd Edition, John Wiley & Sons., New York (1994).
- Nasipuri., Stereochemistry of Organic Compounds, 2nd Edition, Wiley Eastern Ltd, New Delhi (1994)
- 9. Kalsi.P.S., Stereochemistry, Conformation Analysis and Mechanism, 2nd Edition, Wiley Eastern Limited, Chennai (1993)
- 10.Kalsi.P.S., Stereochemistry and Mechanism Through Solved Problems,3rdEdition, Newage International publishers (1999)

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

Bloom's	Weightage
Category	%
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code	:	Credits	:04
L:T:P:S	: 6:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

COURSE TITLE: CORE VIII - INROGANIC CHEMISTRY I

Learning Objective: This course provides an ideal platform to explain the periodic properties of inner transition elements, theories of co-ordination compounds, concepts of bonding in organometallic chemistry, bio inorganic Chemistry and introduction to solid state chemistry.

Course Outcomes: At the end of the Course, the Student will be able to:

CO 1.	To assess the concept of electronic arrangement, various oxidations states and their
	exclusive magnetic properties of lanthanides and actinides [K2]
	To predict the shape, geometry, hybridisation, magnetic properties and stability of
CO 2	various six and four membered octahedral and square planar complexes of 3d series
	transition metals. [K2]
	To discuss the about the origin and concept of pollution arising from metals and
CO 3.	chemicals which affects the environment that includes biosphere, hydrosphere,
	atmosphere and lithosphere. [K3]
	To acquire knowledge on the various donor systems donating sigma and pi bonds
CO 4.	involved in the structure, bonding and properties pertaining to utility nature of
	organometallic compounds comprising of Pb, Zn, Li Cu and B. [K3]
	To distinguish the structure of solids as hcp/ccp based on the arrangement of atoms
CO 5.	in the crystal lattice and establish the nature of the crystal lattice as FCC or BCC or
	SCC[K2].

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО							PSO						
0/10/150	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
CO1	3	3	3	3	2	3	2	2	2	3	3	3	3	3	2
CO2	3	3	2	3	2	3	2	2	2	3	3	3	3	3	2
CO3	3	3	3	3	2	3	2	3	2	3	3	3	2	3	2
CO4	3	3	3	2	2	3	2	2	2	3	3	3	2	3	2
CO5	3	3	3	3	2	3	3	3	2	3	3	3	2	3	2
STRONCI V	COR	DFI	АТЕ	י_ חי	2 1/		DA1	CEL V		JBBI	FT A	FFD	2	11/	FAK

Sl	CONTENTS OF MODULE	IJma	COa
NO	CONTENTS OF MODULE	Hrs	COs
	Unit 1: Chemistry of Inner Transition Elements		
1	 Position in the periodic table. 1.1 Lanthanoids: General characteristics - Electronic configuration, oxidation states, oxidation potential, color, magnetic properties, basic character, solubility of compounds, double salts, chemical reactivity, formation of complex compounds, spectral properties, ionization potential. Lanthanide contraction-consequences. 1.2 Actinoids: General characteristics - Electronic configuration, oxidation states, atomic radii, ionic radii, actinide contraction, formation of complex compounds, magnetic properties, spectral properties, chemical reactivity. Similarities and differences between lanthanides and actinides. 1.3 Extraction and uses of thorium and uranium-Extraction of thorium from monazite and uranium from pitch blende. 	12	CO1
2	 Unit 2: Coordination Chemistry-I 2.1 Theories of coordination compounds- Werner's theory, Effective Atomic Number rule-V.B theory- hybridization, geometry and magnetic properties of [Ni(CN)₄]²⁻, [Zn(NH₃)₄]²⁺,[NiCl₄]²⁻, [Fe(CN)₆]⁴⁻,[Co(CN)₆]³⁻, [CoF₆]³⁻, [Fe(CN)₆]³⁻, [Co(NH₃)₆]³⁺. Limitations of V.B theory. 2.2 Crystal field theory- splitting of metal d orbitals in octahedral and tetrahedral complexes-low spin and high spin complexes. Crystal Field Stabilization Energy (CFSE)-factors affecting Dq. Spectrochemical series. Jahn-Teller distortion-theorem-(example Cu²⁺ complex only). Explanation of magnetic properties and colour using CFT- Comparison of Valence Bond and Crystal field theories. Limitations of Crystal Field theory. 	20	CO2
3	 Unit 3: Bio Inorganic Chemistry 3.1 Toxic effect of metals-sources of metal toxicity- Hg, As, Cd, Pb, Se, Cu, Ni, Mn, Fe, Zn, K, Ba and Sb. Environmental pollution and chemical speciation of elements-Chemical speciation of Pb, Hg, As, Cd, Fe and Cr. 	10	CO3

	3.2 Chelating agents used as drugs-BAL (British Anti Lewisite), EDTA, Unithiol (2,3-dimercapto-1-propane sulfonic acid), dmsa		
	(meso-2,3-dimercapto succinic acid), D-pencillamine-		
	desferrioxamine. Cyanide toxicity and detoxification.		
	Unit 4: Organometallic compounds-I		
	4.1 Introduction to organometallic chemistry- Definition and		
4	Classification with appropriate examples based on nature of metal	13	CO4
4	carbon bond (ionic, s, p and multicentre bonds).	15	04
	4.2 Structure, bonding, properties and uses of organo		
	Magnesium, Zinc, Lithium, Copper and Boron Compounds.		
	Unit 5: Introduction to solid state chemistry		
	5.1 Structures of ionic solids-sodium chloride, cesium chloride,		
	fluorite, anti-fluorite nickel arsenide, cadmium iodide, pervoskite		
	and zinc blende.		
	5.2 Structural faults in crystals. Stoichiometry defects-Schotty		
5	defects and Frenkel defects-variation of properties of crystals due to	20	CO5
5	Schotty defects and Frenkel defects-thermodynamic aspect of	20	COS
	stoichiometric defects. Non-stoichiometric defects-metal excess		
	defects-metal deficiency defects-impurity defects-thermal defects.		
	5.3 Interstitial solid solutions-creating cation vacancy-creating		
	interstitial anions-creating anion vacancy-creating interstitial		
	cations- double substitution.		

REFERENCE BOOKS

- Puri B.R., Sharma, L.R., Kalia, K., Principles of Inorganic Chemistry 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993)
- 2. Lee J. D., Concise Inorganic Chemistry, UK, Blackwell science (2006)
- 3. Madan, R.D., Tuli, G.D Malik.W.U Principles of Inorganic Chemistry, S.Chand, 1999.
- 4. Miessler, G. L. and Tarr, D. A. Inorganic Chemistry III Edition, 2004.
- 5. Soni P. L. Text Book of Inorganic Chemistry, S. Chand & Co., New Delhi, 2006.
- 6. Cotton, F. A and Wilkinson, Advanced Inorganic Chemistry. Wiley Eastern Limited, 1988.
- 7. B.K. Sharma, Industrial Chemistry, Geol Publications. 2002
- 8. R.Sarkar, General and Inorganic Chemistry Part I. Books and Allied (P) Ltd. 2006
- 9. R. Sarkar, General and Inorganic Chemistry Part II Books and Allied (P) Ltd. 2006.

- Arun Bahl, Bahl, B.S. A Text Book of Organic Chemistry. S. Chand and Company Ltd. 16th Edn. 2001.
- 12. Morrison, R.T and Boyd. B.N. Organic Chemistry. (6th Edn.) Allyn and Bacon Ltd. 1976.
- 13. Shriver and Atkins. Inorganic Chemistry IV Edn. International student edn. 2006.
- 14. Advanced Inorganic Chemistry Vol I and II by S. P. Banerjee. Books and Allied (P) Ltd. 2003.
- 15. Solid state chemistry and its applications by A. R. West. 2011. Wiley student edition.
- Organometallic Chemistry: A Unified Approach : A Unified Approach 2nd Edition R. C. Mehrotra and Singh.2014

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

Course Title: CORE IX - PHYSICAL CHEMISTRY- I

LEARNING OBJECTIVES:

To make the students understand how quantum chemistry is developed, appreciate the applications of Boltzmann statistics, concepts related to kinetics of reactions, conductance and its applications and fundamentals of equilibrium electrochemistry.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Explain the basics of atomic structure (related problems) including wave particle duality
CO2	Predict the number of microstates and macro states for given set of particles and outline about Maxwell-Boltzmann statistics
CO3	Provide an insight into the kinetics aspects of chemical reactions and derive kinetic equations
CO4	Discuss the basic of ionics and applications of conductance measurements
CO5	Discuss the basics of electrode potential, cell and its applications to practical purposes

CO/PO/PSO PO PSO **CO1 CO2 CO3 CO4 CO5**

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

SI	CONTENTS OF MODULE	Hrs	COs
NO			005
1	 ATOMIC STRUCTURE 1.1. Black body radiation, Planck's theory (Derivation not required) – equation, importance, and photoelectric effect, significance 1.2. Inadequacy of classical mechanics, Compton Effect (Derivation not required), Bohr's theory, atomic spectrum of hydrogen atom. 1.3 De-Broglie's relationship, Heisenberg's uncertainty principle and its significance. 1.4 Numerical Problems in atomic structure. 	15	
2	 STATISTICAL THERMODYNAMICS 2.1 Probability, microstates (permutations) and macro states (configurations), most probable distribution (dominant configuration) 2.2 Distribution applied to ideal gases- Maxwell–Boltzmann statistics, derivation and significance, partition function, translational partition function, derivation and calculations. 2.3. Derivation of thermodynamic parameters like internal energy(U), enthalpy(H), entropy(S), Helmholtz free energy(A) and Gibbs free energy(G) for monatomic gases from partition function. 	15	
3	 CHEMICAL KINETICS -I 3.1. Rate of a reaction, Average and instantaneous rates, rate equation, rate law, Elementary and complex reactions, order and molecularity of a reaction (related problems). Factors affecting the rate of a reaction. 3.2. Rate constants, Derivation of rate constant expression & characteristics of zero, first, second(equal and different initial concentration) and third order (equal initial concentration only) reactions . 3.3. Methods of determination of orders of reactions: Van't Hoff differential method, Half life method, Ostwald's isolation method. 3.4. Experimental methods of determination of rate constant of a reaction – Volumetric method and polarimetry. 	15	

	3.5. Kinetics of complex reactions – Parallel, Consecutive and		
	Chain reactions.		
	ELECTROCHEMISTRY-I		
	4.1 Arrhenius theory of electrolytic dissociation and its		
	limitations, electrolysis		
	4.2 Faraday's laws of electrolysis and problems		
	4.3 Conductance: specific, equivalent and molar conductance of		
	strong electrolyte and calculations, measurement using Kohlrausch's		
	bridge		
	4.3 Oswald dilution law, variation of specific and equivalent		
	conductance of strong and weak electrolytes with dilution,		
4	Kohlrausch's law for infinite dilution and applications.	15	
4	4.4 Debye - Huckle- Onsager theory of strong electrolytes	15	
	(Derivation not required) - The conductance at high fields (Wein		
	effect) and high frequencies (Debye-Falkenhagen effect).		
	4.5. Ionic mobilities: Determination of ionic mobility, abnormal		
	ionic conductance's, -transport numbers, determination by Hittorf's		
	method-Relationship between ionic mobilities and ionic conductance.		
	4.6 Application of conductance measurements: Determination of		
	λ_∞ of strong electrolytes, Determination of K_a of weak acids,		
	Determination of solubility product of a sparingly soluble salt and		
	determination of ionic product of water.		
	ELECTROCHEMISTRY-II		
	Ionic equilibrium:		
	5.1 Ionic Product of Water- pH Scale- pH of weak acids and weak		
	bases.		
	Buffer solutions-mechanism of buffer action- derivation of		
	Henderson equation and its applications. Buffer capacity, buffer		
5	range, application of buffer solution for the biochemical processes in	15	
	the human body.		
	Equilibrium electrochemistry:		
	5.2 Cells: Electrolytic & Galvanic cells – Reversible and		
	irreversible cells.		
	5.3 Coulomb's law-electric field strength-electric potential -Outer		
	potential, surface potential and inner potential- Electrochemical		

potential, Potential difference across electrode-electrolyte interface-	
Absolute electrode potential - Conventional representation of	
electrochemical cells.	
5.4 Electromotive force of a cell and its measurement using	
Pogondorf's compensation principle. Relative electrode potential,	
Standard hydrogen electrode - Reference electrodes- Standard	
electrode potentials	
5.5 Electrochemical series and its applications- Calculation of	
thermodynamic parameters of Cell reactions (Δ G, Δ H, Δ S and K).	
5.6 EMF dependence on concentration- Nernst equation – Derivation	
and problems. Types of reversible electrodes - Gas electrode,	
metal/metal ion electrode- Amalgam electrode – metal- metal	
insoluble salt and its anion electrode and Redox electrodes-ion	
selective electrodes(glass electrode) Electrode reactions	

REFERENCE BOOKS:

- 1. Principles of Physical Chemistry, Puri, Sharma, Pathania
- 2. Physical Chemistry: Robert G. Mortimer
- 3. Advanced Physical Chemistry Oxford Press. W. Atkins 1990
- 4. Physical Chemistry 4th Edition, Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi
- 5. A Text book of Physical Chemistry, A S Negi, S C Anand
- 6. Physical Chemistry, J. Moore- 4th edn
- 7. Elements of Physical Chemistry, Samuel Glasstone
- 8. A text book of physical chemistry: KL Kapoor (Volume 5-Chemical Kinetics)
- 9. Principals of physical chemistry, S H Maron and C F Prutton (Electrochemistry)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's	Weightage %
Category	
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code	:	Credits	: 05
L:T:P:S	: 6:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

COURSE TITLE: ELECTIVE I - ANALYTICAL CHEMISTRY

LEARNING OBJECTIVES:

This course is offered for students to have exposure to the Laboratory safety practices, Instrumental techniques. The student gets clear idea about the principle and Instrumentation of various techniques which are most useful in chemical Industries.

Course Outcomes: At the end of the Course, the Student will be able to:

CO 1.	To enumerate on Laboratory hygiene and safety and to tabulate the statistical analysis of
	data. [K1]
CO 2	To quantify the ions gravimetrically and assess the differential weight with respect to
	temperature thermogravimetrically. [K3]
	To identify different currents, and distinguish metal ions by half wave potential from
CO 3.	polarogram. To determine the end point of the titrations by amperometry. To interpret
	the presence of racemic mixture by polarimeter. [K3]
CO 4.	To analyse the mixture using column, paper, HPLC, and gas chromatography. [K4]
	To deduce and quantify the presence of metal ions by flame emission and atomic
CO 5.	absorption spectroscopy. [K3]

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO				Р	0						PSO		
0/10/150	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	3	2	3	2	2	3	3	3	3	2
CO2	3	3	2	3	2	3	2	2	3	3	3	3	2
CO3	3	3	3	3	2	3	2	3	3	3	2	3	2
CO4	3	3	3	2	2	3	2	2	3	3	2	3	2
CO5	3	3	3	3	2	3	3	3	3	3	2	3	2

SI NO	CONTENTS OF MODULE	Hrs	COs
	LABORATORY HYGIENE, SAFETY AND ERRORS IN		
	CHEMICAL ANALYSIS		
	1.1 Laboratory Hygiene and safety		
	1.1.1 Storage and handling of chemicals		
	1.1.2 Waste disposal and fume disposal		
	1.1.3 General precautions for avoiding accidents		
	1.1.4 First aid techniques		
	1.1.5 Hazards in laboratory		
	1.1.6 Chemical poisoning and Universal antidotes		
1	1.1.7 Laboratory safety measures	15	CO1
1	1.2 ERRORS IN CHEMICAL ANALYSIS	15	COI
	1.2.1 Types of errors		
	1.2.2 Accuracy and Precision, Absolute and relative uncertainty,		
	propagation of uncertainty.		
	1.2.3 Gaussian distribution, arithmetic mean, median, range,		
	mean deviation, standard deviation, confidence intervals related		
	problems.		
	1.2.4 Statistical Analysis of data (the F test, the t test, Q test for		
	rejection of data, paired t-test, least squares method).		
	1.2.5 Theory of significant figures		
	GRAVIMETRIC ANALYSIS AND THERMOANALYTICAL		
	METHODS		
	2.1.1 GRAVIMETRIC ANALYSIS		
	Methods of obtaining the precipitate -Conditions for precipitation-		
	Choice of precipitants -Advantages and disadvantages of using organic		
	precipitants-Types of organic precipitants-Specific and selective		
2	precipitants	15	CO2
	2.1.2 Sequestering agents- Co-precipitation (surface adsorption,		
	mixed-crystal formation, occlusion, and mechanical entrapment, co		
	precipitation errors)		
	2.1.3 Post precipitation-Effect of digestion-Precipitation from		
	Homogeneous medium-Washing- Drying and Ignition of precipitates-		
	calculations in gravimetric methods-use of gravimetric factor.		

5	Atomic Spectrometric Methods	15	CO5
	techniques-instrumentation and applications		
	4.5 High pressure liquid chromatography- principles-experimental		
	instrumentation and applications		
	4.4 Gas chromatography- principles-experimental techniques-		
	and applications		
4	4.3 Thin layer Chromatography - principles-experimental techniques	15	CO4
	applications		
	4.2 Column Chromatography -principles-experimental techniques and		
	applications		
	4.1 Paper Chromatography -principles-experimental techniques and		
	Basic Chromatographic Techniques		
	acids-estimation of glucose.		
	3.5 Polarimetry-principle-instrumentation-comparison of strength of		
	3.4 Amperometry-basic principles, types of titration curves and uses.		
	analytical tool in quantitative and qualitative analysis.		
	oxygen wave; factors affecting diffusion current. Polarography as an		
	Dropping mercury electrodes, reference electrodes-circuit. Solutions-	-	
3	3.3 Experimental assembly-Half wave potential for electrodes-	15	CO3
	- significance.		
	(derivation not required) and its significance-Half wave potential ($E_{1/2}$)		
	3.2 Migration, convection and diffusion currents- Ilkovic equation		
	mercury electrode (DME)-advantages and disadvantages- applications		
	3.1 Principle- over potential-concentration polarization-dropping		
	Polarography and Polarimetry		
	Mg^{2+} ions Vs EDTA		
	2.2.3 Thermometric titrations and applications- Mixture of Ca^{2+} ,		
	affecting TGA and DTA curves		
	acetate mono hydrate, Calcium oxalate mono hydrate. Factors		
	components with block diagram- Discussion of thermograms- Calcium		
	2.2.2 Differential Thermal analysis-Principles, discussion of various		
	nitrate, Copper Sulphate pentahydrate, Calcium oxalate mono hydrate		
	2.2.1 Thermogravimetric Analysis-Principle, discussion of various components with block diagram- Discussion of thermograms- Silver		
	2.2 THERMOANALYTICAL METHODS		

5.1	Flar	me	em	ission	spe	ctroscopy.
Introductio	on, Princi	ple, Flame	photor	neter, N	ebulizer- burr	ner system,
Pressure	regulato	ors, optic	al sy	/stem.	Evaluation	methods-
Interference	ces-Applie	cations				
5.2	Atom	nic	Abs	orption	spe	ectroscopy
Instrument	tation, H	Hollow ca	thode	lamp,	Qualitative	analysis-
Applicatio	n – Limit	ation.				

TEXT & REFERENCE BOOKS

- 1. S.M. Khopkar, Analytical Chemistry- Narosa Publishing House. 2002.
- 2. R. Gopalan, P. S. Subramanian, K. Rengarajan. Elements of Analytical Chemistry- Sultan Chand, 2009.
- 3. D. A. Skoog, 1985, Principles of Instrumental Methods of Analysis, III Edn. Saunders College Pubs.
- 4. Vogel's hand book of quantitative inorganic analysis- Longman, 1964.
- D. A. Skoog and D. M. West, 1982 Fundamental of Analytical Chemistry, IV Edn. Old Reinhord& Winston Pubs.
- 6. B.K. Sharma, Instrumental methods of chemical analysis-Goel Publications. 2004.
- 7. Instrumental methods of analysis, H.H.Willard, L.I. Merrit Jr and J.A.Dean. Affiliated East West Press 1974.
- 8. Instrumental Methods Of Chemical Analysis by Dr.G.R.Chatwal, Sham Anand
- 9. Instrumental Approach to Chemical Analysis, by A.K.Srivatsava & P.C. Jain

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

COURSE TITLE: ELECTIVE I - PHARMACEUTICAL CHEMISTRY

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

Units	Learning objectives
01	To understand the common diseases and the cure
	To know the terms of pharmacology
02	To understand the mechanism of drug action
03	To acquire knowledge about chemotherapy and the antibiotics
04	To understand the drugs used for diabetes, hypertension, cholesterolemia
05	To acquire knowledge about various health promoting drugs

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО							PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	3	3	3	2	3	3	3	3	3	2
CO3	3	3	3	3	2	2	2	2	3	3	2	3	2
CO4	3	3	3	3	3	3	2	3	3	3	2	3	2
CO5	3	3	3	3	3	3	2	3	3	3	2	3	2

S. No.	CONTENTS OF THE MODULE	Hrs	COs
1	 UNIT 1: INTRODUCTION 1.1 Common diseases - Infective diseases - insect-borne, air-borne and water-bome hereditary diseases - Terminology – drug pharmacology, pharmacognesy, pharmacodynamics, pharmacokinetics, antimetabolites. 1.2 Absorption of drugs - routes of administration of drugs, factors affecting absorption. 1.3 Assay of drugs - chemical, biological immunological assays, LD₅₀ and ED₅₀ therapeutic index, drug dosage. 	15	CO1,
2	 UNIT 2: DRUGS 2.1 Various sources of drugs, pharmacologically active constituents in plants, Indian medicinal plants - tulsi, neem, keezhanelli - their importance. 2.2 Classification of drugs-biological chemical - Mechanism of drug action - Action at cellular and extra cellular sites. 2.3 Drug receptors and biological responses - Metabolism of drugs through oxidation, reduction hydrolysis and conjugate processes, factors affecting metabolism. 	15	CO2,
3	 UNIT 3: CHEMOTHERAPY 3.1 Designation of drugs based on physiological action: Definition and two examples each of Anaesthetics – General, IV and local. 3.2 Analgesics - Nartcotic and synthetic- Antipyretics and anti-inflammatory agents. 3.3 Antibiotics – penicillin, Streptomycin, chloramphenicol, tetracycline – Antivirals. 3.4 AIDS - symptoms prevention, treatment - Cancer and neoplastic agents. 	15	CO3,
4	UNIT 4: COMMON BODY ELMENTS4.1 Diabetes - Causes, hyper and hypoglycemic drugs - Blood pressure - Sistolie & Diastolic	15	CO4,

	 4.2 Hypertensive drugs - Cardiovascular drugs – antiarrhythmic, antianginals, vasodilators - CNS depressants and stimulants - Psychedelic drugs, hypnotics, sedatives (barbiturates, LSD) – 4.3 Lipid profile - HDL, LDL cholesterol lipid lowering drugs. 		
5	 UNIT 5: HEALTH PROMOTING DRUGS 5.1 Nutracenticals - vitamins A, B, C, D, E and K micronutrients Na, K, Ca, Cu, Zn, I - Medically important inorganic compounds of Al, P, As, Hg, Fe - Li examples each their role and applications - Organic Pharmaceutical acids; Agents for kidney function (Aminohippuric acid). 5.2 Agents for liver function (Sulfo bromophthalein). Agents for pituitary function (metyrapone). 5.3 Organic pharmaceutical bases - antioxidents, treatment of ulcer and skin diseases. 	15	CO5

Text Book

Jayashree Ghosts, Pharmaceutical Chemistry, S. Chand and Company Ltd., 2006, New Delhi

Books for Reference

- 1) Lakshmi S., Pharmaceutical chemistry, S. Chand & Sons, 1995, New Delhi
- 2) Ashuttosh Kar, Medicinal chemistry. Wiley Eastern Ltd. 1993. New Delhi.
- 3) Divid William & Thomas Lemke, Foyes principles of medicinal chemistry, 5th edition, 2005. BI publishers
- 4) Romas Nogrady, Medicinal Chemistry, II edition 2004, oxford university, press

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

Course Title: CORE X - ORGANIC CHEMISTRY II

LEARNING OBJECTIVES:

At the completion of this course, students will be able to draw the structure and derive at the configuration of simple carbohydrates like glucose and fructose and understand the structural features of disaccharides. They will be able to distinguish between peptides, their structure and function. They can able to interpret and classify the type of nucleic acids, importance of vitamins and application of lipids. Will also enable them to understand and appreciate the importance of alkaloids and terpenoids.

Course Outcomes: At the end of the Course, the Student will be able to:

	They can define & classify carbohydrates They can differentiate between configuration
CO1	& conformation .They can draw the fischer, newmann conformation for simple
	molecules like D-glucose & can draw the structure of polysaccrides like starch &
	cellulose. They can compare / differentiate the reactivity of glucose & fructose. They
	can able to interconvert various forms of sugars. They can predict the products/ propose
	the mechanisms. They can determine the ring size- pyranose & furanose form.
	They can classify reducing & non-reducing sugars. They can able to draw the structure
CO2	of starch & cellulose. They can determine the structure of sucrose, maltose & lactose by
	chemical degradation.
	They can able to define amino acids, proteins & polypeptides. They can able to classify
CO3	proteins & peptides. They can draw and determine the structure of proteins by end group
	analysis. They can understand the biological importance proteins & amino acids.
	They can draw the structure of base like adenine & guanine. They can able to
	differentiate nucleotides & nucleoside. They can explain the structure of DNA & RNA.
CO4	They can define, steroids, fatty acids & classify fats. They can draw the structure of
	vitamin A & Steroids like cholesterol. They can understand the biological importance of
	DNA & RNA.
	They can draw the simple structure of terpenoids like citral, geraniol. They can able to
CO5	explain the synthesis of important terpenoids like piperine, papaverine. They can
	determine the structure of terpenoids by chemical degradation method.

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO	РО							PSO					
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	3	3	3	2	3	3	3	3	3	2
CO3	3	3	3	3	2	2	2	2	3	3	2	3	2
CO4	3	3	3	3	3	3	2	3	3	3	2	3	2
CO5	3	3	3	3	3	3	2	3	3	3	2	3	2

Sl	CONTENTS OF MODULE	Hrs	COs
NO			
	UNIT 1: Carbohydrates – I		
	1.1 Definition and Classification		
	1.2 Fischer, Haworth and Conformational structures -		
	Configuration – D, L-Ascending of carbon chain in sugars –		
	Kiliani-Fischer synthesis -Descending of carbon chain in sugars-		
	Ruff's synthesis.		
	1.3 Interconversion of sugars - Glucose to Fructose and		
	Fructose to Glucose.		
	1.4 Reactions - Acetylation, Methylation, bisulphite addition,		
1	cyanohydrin, Oxime formation - Mechanism of Osazone	15	CO1
	formation, Action of con-H ₂ SO ₄ and dil.alkali.acetal and		
	hemiacetal.		
	1.5 Oxidation and Reduction: with Bromine water, Con		
	.HNO ₃ , HIO ₄ , Benedict, Fehling's and Tollen's reagents, with HI,		
	H ₂ /Ni and Na-Hg - Mutarotation.		
	1.6 Structural elucidation of Glucose and Fructose-Evidences		
	for open chain and ring structure. Determination of ring size -		
	Pyranose & Furanose forms - differentiation between epimers and		
	anomers.		

	Carbohydrates – II		
	2.1 Disaccharides –Linkage, Classification, - Reducing and non-		
	reducing sugars.		
	2.2 Source, Constitution and Haworth projection - Structural		
2	elucidation of Sucrose, maltose and lactose.	15	CO2
2	2.3 Polysaccharides -structure of starch, cellulose and cellobiose	15	CO2
	(Elucidation of structure is not required)- Hydrolysis products.		
	2.4 Derivatives of cellulose- Preparation, structure and uses of		
	cellulose nitrates, cellulose acetates, cellulose xanthates and ethyl		
	cellulose.		
	UNIT 3: Amino Acids, Polypeptides and Proteins		
	3.1 Amino acids - Definition, classification, Zwitter ions,		
	isoelectric point. Preparation of glycine , alanine and phenyl		
	alanine -Strecker's synthesis, Gabriel Phthalimide synthesis,		
	chemical properties - Biuret, Millon's test- Xanthoproteic and		
	Ninhydrin Test.		
	3.2 Peptides and Proteins - Occurrence, classification (based		
3	Structural and chemical composition), Partial and complete	15	CO3
5	hydrolysis	13	005
	, denaturation and annealing.		
	3.3 Primary and secondary structure of proteins -End group		
	analysis- N-terminal analysis - Enzymatic method, Dansyl		
	method, Sanger and Edmand method - C terminal analysis -		
	enzymatic method, hydrazinolysis, hydanatoin formation method		
	- Tertiary and Quaternary Structure of Proteins(elementary idea		
	only).		
	UNIT 4 : Nucleic Acids, Vitamins and Lipids		
	4.1 Nucleic acids- Components of DNA and RNA –Structure		
	of bases - adenine, guanine, Thymine, Cytosine and Uracil.		
4	4.2 Nucleosides and nucleotides (nomenclature)- Structure of	15	CO4
	polynucleotide- Structure of DNA (Watson-Crick model) and	-	
	RNA (types of RNA), Genetic Code, Biological roles of DNA		
	and RNA: Replication, Transcription and Translation – genomic		
	sequence. (Basic idea only)		

	4.3 Introduction to lipids, classification. Oils and fats:		
	Common fatty acids present in oils and fats, Omega fatty acids,		
	Trans fats, Hydrogenation, Saponification value, Iodine		
	number.		
	4.4 Steroids – structure of simple steroids –Cholesterol		
	4.5 Vitamins – Classification – based on structure and function-		
	ological importance of Vitamins, Structures of Vitamin A and		
	itamin D. Structural elucidation of Vitamin C.		
	UNIT 5: Alkaloids and Terpenoids		
	5.1 Alkaloids: Definition, Classification, Extraction		
	(elementarytreatment).General methods for determining		
	structure -Chemical methods-uses.		
	5.2 Structural elucidation and synthesis of Conine, Piperine ,		
5	Nicotine ,Papavarine.	15	CO5
	5.3 Terpenes and Terpenoids: Classification, Isoprene and		
	special isoprene rules, Isolation,		
	General methods of structural determination-Chemical methods.		
	5.4 Structural elucidation and synthesis of Citral, Geraniol, α		
	– Terpineol.		

REFERENCES & TEXT BOOKS

- 1. Finar I.L., Organic Chemistry, Vol. 1& 2, 6th edition, Addison Wesley Longman Ltd. England(1996)
- Morrison R.T., Boyd R.N., Organic Chemistry, 6th edition, Allyn & Bacon Ltd., Newyork (2006)
- 3. Bahl B.S., Arun Bahl, Advanced Organic Chemistry, 12th edition, Sultan Chand and Co., NewDelhi (1997)
- 4. Pine S.H., Organic Chemistry, 4th edition, Mc-Graw-Hill International Book Company New Delhi(1986)
- 5. Seyhan N. Ege, Organic Chemistry, 5th edition, Houghton Mifflin Co., New York, (2004)
- 6. P.S.Kalsi, Stereochemistry, Conformation Analysis and Mechanism, 2nd Edition, Wiley Eastern Limited, Chennai (1993)
- 7. Jain.M.C., Sharma.S.C., Modern Organic Chemistry, Vishal Publication (1967).

- 8. <u>Janice Gorzynski Smith.</u>, Organic Chemistry, 5th Edition, New Delhi, Mc-Graw-Hill International Book Company, New Delhi (2010)
- 9. Bruice Paula Yurkani., Organic Chemistry, 8th Edition, Pearson (1938)
- Richard O.C. Norman., James M. Coxon., Principles of Organic Synthesis,3rd Edition (1993)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Calegory	
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

Course Title: CORE XI - INORGANIC CHEMISTRY II
--

Learning objective:

The objective of the course is to equip the students to Application of coordination compounds Qualitative analysis detection of metal ions and quantitatively analysis and types of organo metallic compounds on the basis of the nature of metal-carbon bond and non-ionisinggeneral properties of ionizing solvent: electrical conductance, dipole moment, dielectric constant, viscosity, associated molecules, Fundamental particles of the nucleus-classification of fundamental particles-nucleon terminology of nuclides and Artificial radioactivity- Uses of radio isotopes-tracer technique, structural study-study of reaction mechanism

Course Outcomes: At the end of the Course, the Student will be able to:

CO1 Qualitative analysis very useful to identified various oxidation state of the	metal. 18
the state of the second sector diverse the state little sector second seco	
electron rule to understanding the stability of various carbonyl complex	
CO2 Therapeutic chelating agents are used as antidotes for heavy metal poisoning	ng. EDTA
and other complexing agents have been used to speed the elimination of	of harmful
radioactive and other toxic elements from the body. (e.g. Pb2+). In the	se cases a
soluble metal chelate is formed.	
CO3 Chelating agents can be used as Synthetic detergents such as tripolyphosp	ohate. The
chelating agent sequesters hard-water cations, rendering them	incapable
of interfering	
with the surfactant. Gravimetric Analysis : Here chelating ligands are often	en used to
form insoluble complexes e.g. Ni(DMG)2 and Al(oxine)3. So we can	estimate
amount of ion present in unknown solution	
CO4 Rationalize the synthesis, structure, bonding, properties and reactivity of b	ooth
main group and transition metal organized	
Industrially important catalytic processes through the application of organ	nometallic
principles. Work to a professional level of skills in a chemical synthesis	laboratory
demonstrating effective laboratory safety and etiquette especially in the	e areas of
handling of air sensitive reagents, chromatographic techniques and spec	ctroscopic
characterization	

CO5	Clathrate compounds used as medical applications such as in magnetic resonance
	imaging. Used to study the photo-behaviour of organic and inorganic molecules by
	introducing them as probes (guests) into clathrate cages.
	Resolution of racemic mixtures. Zeolites can remove atmospheric pollutants, ozone-
	depleting CFC's and harmful organics from water.
CO6	understated and calculate the mass defect for a nuclear reaction and calculate nuclear
	binding energy Define the age of an object (radiochemical dating) Differentiated
	Artificial radioactivity and induced radioactivity, how energy produced from
	different type of reactor
CO7	Recognize and uses of proton, neutron, electron, positrons, alpha particles, beta
	particles and gamma particles.Comparing the penetrating power of alpha particles,
	beta particles and gamma particles.Qualitatively interpret a decay series.
	Recognize a band stability plot and be able to predict the type of decay that a nucleus
	will undergo based on its composition relative to the band of stability.

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО							PSO					
0/10/150	1	2	3	4	5	6	7	8	1	2	3	4	5	
CO1	3	3	3	2	1	3	3	2	3	2	3	2	2	
CO2	3	2	2	3	2	3	3	3	3	3	2	2	3	
CO3	3	2	2	2	1	2	2	3	2	3	3	2	3	
CO4	3	2	2	3	2	2	3	3	2	2	2	3	3	
CO5	3	2	3	3	1	2	2	3	2	3	3	2	2	
CO6	2	3	3	3	2	3	3	3	3	2	3	2	3	
CO7	3	3	3	3	1	3	3	2	3	3	2	2	2	

S.NO	CONTENTS OF MODULE	Hr	COS
1	COORDINATION CHEMISTRY-II	20	CO1,CO2
1	Application of coordination compounds in analytical chemistry:	20	and CO3
	Qualitative analysis- detection of metal ions; Cu^{2+} in presence of		
	Cd ²⁺ , Ni ²⁺ in the presence of Co ²⁺ , Fe ³⁺ and Al ³⁺ using oxine;		
	detection of chloride ions. Quantitative analysis-Inner metallic		
	complexes- I order inner complexes- II order inner complexes-		
	Application of I order inner metallic complexes in gravimetric		
	determination of metal ions-Separation and estimation of metal ions		
	by ion-exchange. Complexometric titrations-definition-chelon,		
	complexing agents, complexometric titration and examples.		
	Complex formation reactions and selection of complexometric		
	titrants-methods employed in complexometric titrations-direct		
	titration, back titration, replacement of substitution titration, indirect		
	titration, estimation of multiple cations in a mixture. Application of		
	complexometric titration-estimation of total hardness of water using		
	EDTA, Metal carbonyls –mono and polynuclear -Ni, Fe, Cr, Co and		
	Mn- structures and bonding. EAN rule (18 electron rule) molecular		
	orbital approachexplanation of 18 electron rule in metal carbonyl		
	and formation of some carbonyls on the basis of this rule. Ex.		
	Ni(CO)4, Cr (CO)6, Fe(CO)5, Mn ₂ (CO)10, Co ₂ (CO)8, Fe ₂ (CO)9.		
2	ORGANOMETALLIC COMPOUNDS-II	10	CO4
	Sigma base -pi acid ligands, pi base-pi acid ligands- types of		
	organo metallic compounds on the basis of the nature of metal-		
	carbon bond. Organo metallic compounds of alkenes, alkynes and		
	cyclopenta diene. Ferrocence-Preparation, properties, structure and		
	bonding.		
3	CLATHRATE COMPOUNDS NON-AQUEOUS SOLVENTS	15	CO5
	Clathrate compounds-Clathrates of noble gases, phenol and		
	quinol-its uses. Silicones - synthesis, properties and uses. Non		
	Aqueous Solvents: Classification of solvents-Cady-Esley rule-		
	protic and aprotic –acidic, basic, amphiprotic-ionising, non-		
	ionising-general properties of ionizing solvent: electrical		
	conductance, dipole moment, dielectric constant, viscosity,		

	•			
	associ	ated molecules. Chemistry of liquid NH3: acid-base reactions-		
	ampho	oteric behavior-formation of ammoniates-ammonialysis-		
	compl			
	dissoc			
	advan			
	of SC	O ₂ as solvent: acid-base reactions-amphoteric behavior-		
	solvat	ion reaction and formation of solvents-solvolysis-complex		
	forma	tion reaction- redox reaction- precipitate formation-organic		
	reaction	ons in liquid SO ₂ .		
4	NUC	LEAR CHEMISTRY-I	15	CO6
		4.1 Fundamental particles of the nucleus-classification of		
	funda	mental particles-nucleon terminology of nuclides- isotopes-		
	isobar	rs-isotones-mirror nuclei. Nuclear radius, nuclear volume-		
	nuclea	ar mass and nuclear forces operating between the nucleons.		
	Nucle			
		4.2 Nuclear binding energy, Mass defect, simple calculations		
	involv	ving mass defect binding energy per nucleon, and packing		
	fractio	on. Magic numbers-liquid drop model, shell model.		
5	NUCI	LEAR CHEMISTRY-II	15	CO7
	5.1	Natural radioactivity - radioactive series including		
		neptunium series - group displacement law. Applications:		
		employing gamma radiations-food products-testing of metal		
		castings-pest control by irradiation-employing isotopes:		
		tracer technique-structural study (S2O32- only)-study of		
		reaction mechanism-study of photosynthesis-in medicine.		
	5.2	Artificial radioactivitytracer technique, structural study-		
		study of reaction mechanism-study of equilibria-study of		
		photosynthesis-radio isotopes in medicine-radio carbon		
		dating. Nuclear fission- mechanism of nuclear fission.		
		dating. Nuclear fission- mechanism of nuclear fission. Nuclear reactors-the design and construction of the nuclear		
		-		
		Nuclear reactors-the design and construction of the nuclear		
		Nuclear reactors-the design and construction of the nuclear reactor-safety measure and location of the nuclear reactor-		

REFERENCE BOOKS

- Puri B.R., Sharma, L.R., Kalia, K., Principles of Inorganic Chemistry, 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993)
- 2. Lee J. D., Concise Inorganic Chemistry, UK, Blackwell science (2006)
- 3. Madan, R.D., Tuli, G.D Malik.W.U Principles of Inorganic Chemistry, S. Chand, 1999.
- 4. Miessler, G. L. and Tarr, D. A. Inorganic Chemistry III Edition, 2004.
- 5. Soni P. L. Text Book of Inorganic Chemistry, S. Chand & Co., New Delhi, 2006.
- 6. Cotton and Wilkinson. Advanced Inorganic Chemistry. Wiley Eastern Limited. 1988.
- 7. B.K. Sharma. -Industrial Chemistry Geol Publications. 2002.
- 8. Sarkar. R, General and Inorganic Chemistry Part I Books and Allied (P) Ltd.2006.
- 9. Sarkar .R, General and Inorganic Chemistry Part II Books and Allied (P) Ltd.2006.
- 10. R. D. Madan. Modern Inorganic Chemistry. Sultan Chand and Company Ltd. 2006.
- 11. Advanced Inorganic Chemistry Vol I and II by S. P. Banerjee. Books and Allied (P) Ltd. 2003.
- 12. Advanced Inorganic Chemistry Vol I and II by Satya Prakash, G. D. Tuli, S. K. Basu and R.D Madan S. Chand & Co., New Delhi, Reprint. 2012.

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

Course Title: CORE XII - PHYSICAL CHEMISTRY II

Learning objective:

To make the students apply the principles involved in the spectroscopy of gases, various theories of reaction rates, concepts of catalysis and adsorption, set up various electrochemical cells and determine their applications, set foundations for group theory, elementary photochemistry and quantum chemistry

Course Outcomes: At the end of the Course, the Student will be able to:

C01	compare the energy gap between translational, rotational, vibrational and electronic
	energy levels
CO2	determine bond length, dissociation energy, force constant and zero point energy and so
02	on of gaseous molecules using the principles of spectroscopy.
CO3	Quantitatively calculate the effect of temperature on the rate of a reaction using collision
03	theory and ARRT which helps him to plan the chemical reaction.
CO4	compare the catalytic activity of conventional catalyst and enzyme catalyst and make use
04	of its specificity and sensitivity to temperature and pH to plan the chemical reaction.
CO5	Students could set up different chemical and concentration cells to generate electricity and
	also explain the working of pace maker cells.
CO6	Determine the concentration of an unknown solution, solubility product and activity
00	coefficient etc. with the help of the potentiometer.
	Use the concept of overvoltage for the selection of suitable electrodes in the construction
C07	of battery or electrolysis.
01	They will be able to control the corrosion using thermodynamic and kinetic concepts and
	also utilizing passivation.
	Explain the foundation for the advanced group theory which finds wider applications in
CO8	fields such as quantum chemistry, spectroscopy etc.
	They can discuss and explain the various photochemical and photo physical processes
	Apply Schrodinger wave equation to quantum mechanical systems such as 1D, 2D, 3D
CO9	and rigid rotor to deduce the expression for the energy which he can use in molecular
0.09	spectroscopy.
	Can set up Schrodinger equation for hydrogen atom and identify the radial and angular
CO10	probability distribution functions to visualize and grasp the concept of various orbitals and
	their shapes

					PO						PSO		
CO/PO/PSO	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	2	1	2	1	3	3	2	3	3	3
CO2	3	3	3	1	2	2	1	3	3	3	3	3	3
CO3	3	3	3	1	1	2	2	3	3	2	3	2	2
CO4	3	3	3	1	2	2	3	3	3	2	3	3	3
CO5	3	3	3	3	1	2	2	3	3	3	3	2	3
CO6	3	3	3	2	1	2	1	3	3	2	2	2	3
CO7	3	3	3	3	2	3	3	3	3	3	2	2	2
CO8	3	2	3	3	1	1	1	3	3	2	2	3	3
CO9	3	3	3	1	1	1	1	2	3	2	2	3	2
CO10	3	3	3	3	2	2	1	3	3	3	3	2	3

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

Sl NO	CONTENTS OF MODULE	Hrs	COs
1	 Unit 1: SPECTROSCOPY 1.1 Interaction of radiation with matter: Electromagnetic spectrum, quantisation of energy, Rotational, vibrational and Electronic energy levels- Difference between spectra of atoms and molecules-Absorption and emission spectra. 1.2 Boltzmann distribution (formula only): Relative population of translational, rotational, vibration and electronic energy levels at different temperatures. 1.3 Microwave spectroscopy: Rotational spectra of diatomic molecules, rigid rotator, selection rule for rotational transition, Frequency of spectral lines, calculation of inter-nuclear distance in diatomic molecules. Isotope effect -Instrumentation. 1.4 Infrared spectroscopy: Vibrations of diatomic molecules, Harmonic and anharmonic oscillators, zero point energy, selection rule 	15	CO1, CO2

	 for vibrational transition, determination of zero point energy, v_{max} of dissociation, force constant- Fundamental band, Overtones and hot band (simple treatment-only concepts). isotope effect. 1.5 Vibration-rotation spectra of diatomic molecules-PQR branches 		
	1.6 Raman spectroscopy : Rayleigh scattering and Raman scattering-Explanation based on quantum theory only, Stokes and		
	antistokes lines in Raman spectra, Raman frequency, condition for		
	molecule to be Raman active - Comparison of Raman and IR spectra-		
	Raman and IR spectroscopy of CO2 and N2O as examples-Rule of		
	mutual exclusion principle. Instrumentation.		
	Unit 2: CHEMICAL KINETICS –II Catalysis & adsorption		
	2.1 Effect of temperature on reaction rates – concept of activation		
	energy, energy barrier- Arrhenius equation.		
	2.2 Theories of reaction rates – Collision theory –Failures of		
	collision theory and correction factors- Lindemann's theory of		
	unimolecular reaction. Theory of absolute reaction rates – Derivation		~ ~ ~
2	of rate for a bimolecular reaction (based on thermodynamic concept)	15	CO3,
	- significance of entropy, enthalpy and free energy of activation.		CO4
	Comparison of Arrhenius theory, collision theory and ARRT. 2.3 Catalysis- Homogeneous and heterogeneous catalysis-		
	Enzyme catalysis-Effect of temperature and pH on enzyme catalyzed		
	reactions. Derivation of Michaels –Menton equation –Adsorption -		
	Freundlich adsoption - Langmuir adsorption –B.E.T theory of		
	multilayer adsorption-B.E.T Equation (no derivation)		
	Unit 3: ELECTRO CHEMISTRY-III		
	3.1 Electrochemical cells: Types, Chemical cells with and		
	without transport-Concentration cells, membrane		
	potential, pace maker cells.		CO5,
3	3.2 Concentration cells with and without transport, Liquid	15	CO6,
	junction potential.		CO7
	3.3 Application of EMF measurements: Determination of Valency		
	of ion, solubility product (concentration cell and chemical cell		
	method) and activity co-efficient of an electrolyte.		

	3.4 Determination of pH using Hydrogen, quinhydrone and glass		
	electrodes and determination of pKa of weak acids by potentiometric		
	method.		
	3.5 Potentiometric titrations: Strong Acid vs strong base, Mixture		
	of strong acid and weak acid Vs strong base, Polybasic acid with		
	strong base, Redox titrations, Precipitation titrations, Mixture of		
	halides Vs AgNO ₃ .		
	3.6 Acid-Storage batteries, Fuel Cells, Decomposition potential,		
	Overvoltage.		
	3.7 Corrosion: General and electrochemical theory of corrosion,		
	prevention of corrosion, passivation.		
	Unit 4: GROUP THEORY AND PHOTOCHEMISTY		
	4.1 Symmetry operations, Symmetry elements- axis of symmetry,		
	plane of symmetry, Centre of symmetry, improper axis of symmetry		
	and identity element as applicable to H_2O , NH_3 , BF_3 and CH_4		
	molecules.		
	4.2 Illustration of mathematical rules for the group using		
	symmetry operations of H_2O molecule-Construction of group		
4	multiplication table for C_2v and C_3v point groups.	15	CO8
	4.3 Laws of photo chemistry: Beer-Lambert, Grothus–Draper and		
	Stark – Einstein laws.		
	4.4 Quantum efficiency. Photo chemical reactions – rate law –		
	comparison between thermal and photochemical reactions.		
	4.4 Photo physical processes, Fluorescence and Phosphorescence-		
	photosensitization-Chemiluminescence.		
	Unit 5: QUANTUM MECHANICS FOR BEGINNERS		
	5.1 Postulates of quantum mechanics –equation- normalized,		
	orthogonal and orthonormal		
	Functions- quantum mechanical operations.		
	5.2 Particles in a box with infinite potential barrier (1D, 2D, 3D)		
5	5.3 Rigid rotor in 3D (no derivation)		
	5.4 1D- Simple harmonic oscillator (no derivation)		
	5.5 Hydrogen atom (no derivation), radial and angular		COC
	probability distribution.	15	CO9,
	5.6 Concept of orbitals.		CO10
1	1	1	

REFERENCE BOOKS:

- 1. Principles Of Physical Chemistry, Puri, Sharma Pathania
- 2. Physical Chemistry, Gilbert W. Castellan, 3rd edition
- 3. Physical Chemistry: Robert G. Mortimer
- 4. W. Atkins Advanced Physical Chemistry Oxford Press. 1990
- 5. Physical Chemistry 4th Edition, Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi
- 6. A text book of physical chemistry: KL Kapoor (Volume 4-quantum, 5- kinetics)
- 7. Principals of physical chemistry, S H Maron and C F Prutton (Electro chemistry)
- 8. R.K. Prasad, Quantum Chemistry, Wiley Eastern, New Delhi, 1992.
- 9. Quantum Chemistry, Second Edition, Donald A. McQuarrie
- 10. Group theory an its applications, Salahuddin Kunju, G Krishnan
- 11. A Text book of Physical Chemistry, A S Negi, S C Anand
- 12. Physical Chemistry, J. Moore- 4th edn
- 13. Molecular Spectroscopy, Banwell
- 14. Text book of Physical Chemistry, Samuel Glasstone

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

Bloom's	Weightage %
Category	
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

Course Title: ELECTIVE II - APPLIED CHEMISTRY

LEARNING OBJECTIVES:

This course aims to explain the crucial role of polymers, pharmaceuticals and dairy products which are popular in different dominions of science, technologies, industries and integral part in vital life processes. In addition, currently budding research applications of nano chemistry will also be discussed in detail.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Define the pragmatic impacts of polymer in human daily life.
CO2	Quote the chemical changes which are taking place in a polymer like degradation with
	live examples.
CO3	Explain the importance of Glass transition temperature (Tg) as a tool to modify the
005	physical properties of drugs and polymer molecules.
CO4	Solve the chemical quality related issues of dairy industry.
CO5	Apply the knowledge on physico-chemical properties and composition of milk to
05	distribute them into useful dairy products.
COC	Summarise the concepts of forensic science for its pivotal role in legal system and related
CO6	issues
0.07	Explain the major facts of investigations as well as evidence collection and preservation
CO7	techniques.
CO8	Analyse a crime scene and they will be in a position to assess and interpret the evidences
	based on chemical and instrumental analysis.
CO9	Predict the chemical formulation of drugs which are chronically used.
CO10	Compare the size of objects of nano and micro levels with bulk entities.
CO11	Explain the importance of surface area and how it helps in increasing the reaction rate
COII	and wide field applications are formulated based on nano particles.
CO12	Classify the various medicinal application of nano particles involved in drug delivery,
	therapy technique and diagnosis.

CO/PO/PSO		РО									PSO				
	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	1	2	<u>3</u>	<u>4</u>	<u>5</u>		
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO2	3	3	3	3	2	3	3	3	3	3	3	3	3		
CO3	3	3	3	2	3	3	3	3	3	3	3	3	3		
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO6	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO7	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO8	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO9	3	3	2	2	3	3	3	3	3	3	3	3	3		
CO10	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO11	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO12	3	3	3	3	3	3	3	3	3	3	3	3	3		

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

S.No.	CONTENTS OF MODULE	Hrs	COs
1	UNIT 1: Polymer Chemistry 1.1 Introduction to polymers- Tacticity- Properties: glass transition temperature (T_g) – Definition – factors affecting T_g – relationships between T_g and molecular weight and melting point. Importance of T_g . 1.2 Molecular weight of polymers: Number average, weight average, viscosity average molecular weights, and degree of polymerization. 1.3 Reactions: hydrolysis – hydrogenation – addition – substitutions – cross linking vulcanization and cyclisation reactions. 1.4 Basic idea on thermal, photo and oxidative degradations of polymers. 1.5 General methods of preparation, properties and uses of the following Polymers: polycarbonates, polymethylmethacrylate, polyethylene, polyurethanes, polyesters, polyamides (Kevlar), rubber-styrene and neoprene rubbers.	15	CO1, CO2 and CO3

2	 UNIT 2: Dairy Chemistry 2.1 composition of milk, Flavour and aroma of milk, physical properties of milk 2.2 Effect of heat on milk, Pasteurisation, Homogenisation 2.3 Milk products, Cream Butter, Ice cream, Milk powder. 	15	CO4 and CO5
3	 UNIT 3: Forensic chemistry 3.1 Definition, History, Development and Scope of Forensic Science. 3.2 General methods of chemical analysis for alcohol, Classification of poisons. 3.3 Identification and detection of biological fluids (Blood, Semen, Saliva and Urine) and their Medico-logical importance. 3.4 Modern Developments and their concepts (Narco analysis, Brain mapping, fingerprinting, DNA Profiling, voice identification, Cyber crime, Forensic Odontology and Bitemarks). 3.5 procedure of taking fingerprints; identification of pattern types, developing latent fingerprints (Powder Method), spot test for blood identification. 	15	CO6, CO7 and CO8
4	 UNIT 4: Pharmaceutical chemistry 4.1 Designation of drugs based on physiological action; Definition and two examples each Anaesthetics – General, intravenous and local – Analgesics – Narcotic and synthetic – Antipyretics and Anti Inflammatory Agents – antibiotics – Pencillin, Chloramphenicol, – AIDS – symptoms prevention, treatment – Cancer and neoplastic agents. 4.2 Diabetes – Causes, hyper and hypoglycemic drugs – Blood pressure – Systolic & Diastolic Hypertensive drugs – Cardiovascular drugs – anti-arrhythmic, anti-anginals, vasodilators 	15	CO9
5	UNIT 5: Nano Chemistry 5.1 Nanochemistry - definition, Classification of nano materials based on the size, shape, surface morphology. chemical methods of preparation of nano particles (Gold, Silver, Cadmium, Zinc- Sulphides, Selenides), XRD, characterization, Surface area (BET equation), SEM, TEM (Elementary idea) 5.2 Nano particles - Properties of Nano particles, General method of Preparation-sol gel technique. 5.3 Application of Nanoparticles in various fields- Basic idea.	15	CO10, C011 & CO12

TEXT BOOKS AND REFERENCES

- 1. Gowariker V.R., Viswanathan N.V. and Jayader Sreedhar, Polymer Science, Wiley Eastern Ltd., New Delhi, 1978
- 2. Sharma, B.K., Polymer Chemistry, Goel Publishing House, Meerut, 1989.
- Arora M.G., Singh and Yadav M.S., Polymer Chemistry, 2nd Revised edition, Anmol Publications Private Ltd., New Delhi, 1989.
- 4. S.Shanmugham. Nano technology, M. J. P. Publishers, 2010.
- 5. V.Raghavan, Physical Metallurgy Prentile hall of India, New Delhi, 1989
- 6. Jayashree Ghosh, pharmaceutical chemistry, S. Chand and Company Ltd., 2006, New Delhi.
- 7. Lakshmi S., Pharmaceutical chemistry, S. Chand & Sons, 1995, New Delhi.
- 8. Ashuttoshkar, Medicinal Chemistry, Wiley Eastern Ltd., 1993, New Delhi.
- David William & Thomas Lemke, Foyers Principles of medicinal chemistry, 5th edition, 2005, BI publishers.
- 10. Nano-The essentials, understanding nanoscience and nano technology Mcgraw Hill Professional,2008

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

Units	Learning objectives
01	To understand the requirements to start an industry – different fuels used and the industrial catalyst used. K3
02	To know about different petrochemical industries thoroughly. K3
03	To understand the manufacture of fertilizers and speciality chemicals. K3
04	To acquire knowledge about oils, soaps, detergents, sugar industry, leather and pesticide industries. K3
05	To understand the important process of metallurgy extraction of metals and environmental problems caused by chemical industries K4

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

.

CO/PO/PSO	PO	PO						PSO					
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	2	2	1	2	2	3	2	3	2	3
CO2	3	3	3	2	2	1	2	2	3	2	3	2	3
CO3	3	3	3	2	3	2	2	2	3	3	3	3	3
CO4	3	3	3	2	3	2	3	3	3	3	3	3	2
CO5	3	3	3	2	3	2	3	3	3	3	3	3	2

S. No.	CONTENTS OF THE MODULE	Hrs	COs
1	 UNIT 1: INDUSTRIAL REQUIREMENTS (15) 2.1 Requirements of an industry – location – water – industrial water treatment – safety measures - pilot plants. 2.2 Fuels types of fuels with examples - coal - carbonization of coal - coal tar distillation - liquid fuels - gaseous fuels - selection of fuels - nuclear fuels. Energy - sources of energy-renewable and non-renewable energies - non conventional energies. 2.3 Industrial catalysts - Types of catalysts - Functions and applications of Raney Nickel, Pd, CuCrO₄, TiO₂, Al, V and Pt based catalysts and zeolites. 	15	CO1,
2	 UNIT 2: PETROCHEMICAL INDUSTRIES (15) 2.1 Crude oil - constitution and distillation - composition of different distillates - pour points, depressants, drag reducers, viscosity reducers, ignition point, flash point octane number – cracking - catalysts used in petroleum industries - structure selectivity and applications. 2,2 Manufacture of synthetic petrol - Dergius and Fischer Tropsh processes - Manufacture of petrochemicals and petrochemical polymers. 2,3 Manufacture of higher olefins, Acetaldehyde, Acetic acid, Ethylene glycol, glycerine, Acetone, phenol, carbon disulphide, vinylacatate, Cumene, chlorophrenes, Butane diols, Xylenes, Lineral alkyl benzenes and their Sulphonates 	15	СО2,
3	 UNIT 3: FERTILIZERS AND SPECIALITY CHEMICALS (15) 1.1 Manufacture - Properties and industrials uses of solvents – DMF, DMSO, THF and Diozane. 	15	СОЗ,

	 1.2 Fertilizers – Raw materials, manufacture (flow chart chemical process with equations) of ammonium nitrate, ammonium sulphate, urea, calcium cyanamide, calcium ammonium nitrate, sodium nitrate, ammonium chloride, ammonium phosphate, super phosphate of lime, NPK fertilizers. 3.3 Manufacture in pure form of the following - Sodium carbonate, Oxalic acid, Potassium dichromate, Perchloric acid. 		
	UNIT 4: OILS, SOAPS AND DETERGENTS (15)		
4	 4.1 Manufacture of Cl₂, NaOH nad Chlorates of Na and K manufacture of perchlorate. Oils - difference between oils and fats - manufacture of cotton seed oil and soybean oil - refining of oil - manufacture of soaps - toilet and transparent soaps. 4.2 Detergents - synthetic detergents -surface active agents and their classification - manufacture of anionic, cationic and non-ionic detergents and shampoo. 4.3 Sugar industry - manufacture of sugar from cane sugar and beet root. Manufacture of leather - hides - Vegetable and chrome tanning finishing. 4.4 Manufacture of DDT, dinitrophenols, BHC, gamaxane, malathion, parathion, and dementon. 	15	СО4,
5	 UNIT 5: METALLURGY (15) 5.1 General methods of metallurgy – ores - types methods of concentration of ores- hydro metallurgy, phyrometallurgy - various of reduction of methods, refining of metals. 5.2 Extraction of Cr, Mn, V, Co, Pt, U and Th. 5.3 Environmental problems of chemicals industries – methods of control - sewage treatment and waste management. Man power in chemical industries - labour problems - Six Sigma (Basic concept only). 	15	CO5

Books for Reference

- 1) Sharma B. K. Industrial Chemistry, Geol publishing House, 2003, Meerut.
- 2) Drydense C.E, Outlines of Chemical Technology. Gopala rao, Eastwest press, New Delhi
- 3) Shreve RV, Chemical Process Industries, TataMc Graw Hill publishing company, Mumbai
- 4) Steines H., Introduction to petrochemicals, Pergaman Press.
- 5) Alan Cottrel, An introduction to Metallurgy. Orient Longman (2000)

ASSESSMENT PATTERN

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's	Weightage %
Category	
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

Course flue; ELECTIVE III FRISICAL CREWIISTKI	FRACTICALS	
Course Code :	Credits	: 04
L:T:P:S : 4:0:0:0	CIA Marks	: 40
Exam Hours : 03	ESE Marks	: 60

Course Title: ELECTIVE III PHYSICAL CHEMISTRY PRACTICALS

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	derive kinetic equations and investigate the reaction rate
CO2	construct phase diagram & determine the eutectic composition and temperature
CO3	compute the colligative properties such as depression of freezing point & cryoscopic constant
CO4	predict the transition temperature of hydrated salts
CO5	apply Nernst distribution law and calculate equilibrium constant
CO6	determine the miscibility temperature of phenol-water system and study the effect of impurity to CST

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO	PO	PO								PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5	
CO1	3	3	3	2	2	2	3	1	3	3	3	2	3	
CO2	3	3	3	2	2	2	3	1	3	3	3	2	3	
CO3	3	3	3	2	2	2	3	1	3	3	3	2	3	
CO4	3	3	3	2	2	2	2	2	3	3	3	2	3	
CO5	3	3	3	2	2	2	2	2	3	3	3	2	3	
CO6	3	3	3	2	2	2	2	2	3	3	3	2	3	

Sl NO	LIST OF EXPERIMENTS	Hrs	COs
	LIST OF EXPERIMENTS1.*Determination of Critical Solution Temperature2.Effect of Impurity on Critical Solution Temperature3.Determination of Transition Temperature4.Determination of Kf and molecular weight by RastMethod5.Kinetics of Acid Catalysed Hydrolysis of Ester (Firstorder kinetics)6.Kinetics of Iodination of Acetone (Zero order kinetics)7.Kinetics of Persulphate-Iodide Reaction (Second orderkinetics)8.Determination of Partition Coefficient of Iodine betweenCCl4 and water.9.*Determination of Equilibrium constant of KI + I2 = KI310.*Phase Diagram (Simple Eutectic System)	Hrs 9	COs CO1, CO2, CO3, CO4, CO5 & CO6
	 11. *Determination of Viscosity 12. * Determination of Association factor of Benzoic acid * Not to be given for examination 		

TEXT & REFERENCE BOOKS:

- 1. Venkateswaran, V. Veeraswamy, R. Kulandaivelu A.R., Basic Principles of Practical Chemistry, II Edn. New Delhi, Sultan Chand and Sons, (1997)
- 2. Daniels et al., Experimental Physical Chemistry, VII Edn, New York, McGraw Hill, (1970)
- 3. Findley, A., Practical Physical Chemistry, VII Edn., London, Longman (1959)
- 4. Ahluwalia, V.K., Dingra, S and Gulati, A. College Practical Chemistry, Orient Longman Pvt. Ltd., Hyderabad (2005)
- 5. Sharma, K. K. and Sharma, D.S. Introduction to Practical Chemistry, Vikas Publishing House, New Delhi, (2005)

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's Category	Weightage %
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

Course Title: ELECTIVE III POLYMER CHEMISTRY

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

COs	Learning objectives
01	To know the types of polymers and the chemistry of polymerization K2
02	To understand the physical properties of polymers, their reactions and degradation K3
03	To acquire knowledge about the polymerisation techniques and polymer processing. K3
04	To know the chemistry of individual polymers, their preparation properties K3
05	To have an idea about the recent advances in polymer science. K4

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO	PO	0							PSC	PSO			
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	3	3	3	2	2	2	3	1	3	3	3	2	3
CO2	3	3	3	2	2	2	3	1	3	3	3	2	3
CO3	3	3	3	2	2	2	3	1	3	3	3	2	3
CO4	3	3	3	2	2	2	2	2	3	3	3	2	3
CO5	3	3	3	2	2	2	2	2	3	3	3	2	3

S No	CONTENTS OF MODULE	Hrs	Cos
1	 UNIT 1: INTRODUCTION TO POLYMERS (15) 1.1 Importance of polymers: Basic concept - Monomers and polymers – definition. 1.2 Classification of polymers on the basis of microstructure, macrostructures and applications (thermosetting and thermoplastic) Distinction among plastics, elastomers and fibres. Homo and heteropolymers - copolymers. 1.3 Chemistry of polymerization - Chain polymerisation, Free radical, ionic, coordination, step Polymerisation. Polyaddition and polycondensation miscellaneous ring-opening and group transfer polymerization 	15	CO1
2	 UNIT 2: PHYSICAL PROPERTIES AND REACTIONS OF POLYMERS (15) 2.1 Properties : Glass transition temperature (Tg) - Definition - Factors affecting Tg - relationship between Tg and molecular weight and melting point. Importance of Tg. 2.2 Molecular weight of polymers: Number average, weight average, sedimentation and viscosity average molecular weight. Molecular weights and degree of polymerization. 2.3 Reactions: hydrolysis - hydrogenation - addition - substitutions - cross-linking vulcanisation and cyclisation reactions. 2.4 Polymer degradation. Basic idea of thermal photo and oxidative degradation of polymers. 	15	CO2
3	 UNIT 3: POLYMERIZATION TECHNIQUES AND PROCESSING (15) 3.1 Polymerisation techniques: Bulk, solution, suspension, emulsion, melt condensation and interfacial polycondensation polymerization. 3.2 3.2 Polymer processing: Calendaring - die casting, rotational casting compression. Injection moulding. 	15	CO3
4	UNIT 4: CHEMISTRY OF COMMERCIAL POLYMERS (15)	15	CO4

	 4.1 General methods of preparation, properties and uses of the following Polymers: Teflon, polymethyl methacrylate. Polyethylene, polystyrene, PAN. 4.2 polyesters, polycarbonates, polyamides (Kevlar), polyurethanes, PVC, epoxy resins, rubber-styrene and neoprene rubber, Phenol - formaldehyde and urea - formaldehyde resins. 		
5	 UNIT 5: ADVANCES IN POLYMERS 5.1 Biopolymers - biomaterials. Polymers in medical field. High temperature and fire-resistant polymers. 5.2Silicones. Conducting - carbon Fibers. (basic idea only). 	15	CO5

TEXT BOOK

Billmeyer F.W., Text book of polymer science, Jr. John Wiley and Sons, 2010.

Books for Reference

- 1. Gowariker V.R., Viswanathan N.V. and Jayader Sreedhar, Polymer Science, Wiley Eastern Ltd., New Delhi, 1978.
- 2. Sharma, B.K., Polymer Chemistry, Goel Publishing House, Meerut, 1989.
- 3. Arora M.G., Singh and Yadav M.S., Polymer Chemistry, 2nd Revised edition, Anmol Publications Private Ltd., New Delhi, 1989.

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

ELECTIVE IV Course Title: INORGANIC CHEMISTRY PRACTICALS - GRAVIMETRIC ANALYSIS AND INORGANIC CHEMISTRY COMPLEX PRPARATION

Course Code	:	Credits	:04
L:T:P:S	: 4:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

Learning objective:

The objective of the course is to equip the students to determine the amount of ions present in precipitate and preparation of various inorganic complexes.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	To determine amount of analyte to get precipitate.
CO2	To predict the percentage of analyte precipitate
CO3	Student can able to explain why is gravimetric analysis is more accurate than volumetric analysis
CO4	The students will get training in the quantitative analysis of metal ions and anions using gravimetric method.
CO5	Determination of purity and thermal stability of both the primary and secondary standard
CO6	Determination of composition of complex mixture
C07	Studying the sublimation behavior of various mixture and in gravimetric sample preparation, both solids and solvents are weighed to prepare specific, precise concentration, which help minimize out of specification error

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

				PSO									
	1 2 3 4 5		6	7	8	1	2	3	4	5			
	(KB)	CT	PS	ТО	com	LLL	ETHIC	IND	T	4	5	-	3
CO1	3	2	3	2	1	3	3	2	3	2	3	2	2
CO2	3	2	2	2	1	3	3	3	3	3	2	2	3
CO3	3	2	3	2	1	2	3	2	2	2	2	3	2
CO4	3	2	2	3	1	3	3	3	3	2	2	3	3

CO5	3	2	2	2	1	2	3	2	2	3	2	3	2
CO6	3	2	2	3	1	2	3	3	3	2	3	2	3
CO7	3	2	3	3	1	3	3	2	3	2	2	2	2

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S No	CONTENTS OF MODULE	Hrs	Cos
1	Estimation of sulphate as barium sulphate	3	CO1
2	Estimation of barium as barium sulphate	3	CO2
3	Estimation of lead as lead chromate	3	CO3
4	Estimation of calcium as calcium oxalate monohydrate	3	CO3
5	Estimation of nickel as Ni(DMG) ₂ complex.	3	CO4
6	Estimation of Barium as Barium chromate	3	CO4
7	Estimation of Magnesium as Magnesium oxinate by precipitation from homogenous solution.	3	CO5
8	PREPARATION OF INORGANIC COMPLEXES(i) Tetrammine copper (II) sulphate(ii) Potassium trisoxalatochromate (III)(iii) Hexamminenickel (II) chloride	3	CO6 &CO7

REFERENCE BOOKS:

- 1. Furniss, B.S., et al., Vogel's Textbook of Practical Inorganic Chemistry, VII Edn. London, ELBS-Longman, (1984)
- 2. Venkateswaran, V. Veeraswamy, R. Kulandaivelu A.R., Basic Principles of Practical Chemistry, II Edn. New Delhi, Sultan Chand and Sons, (1997)

Bloom's Category MODEL ESE Marks (out of 50) 60 60 Remember Understand Apply 30 30 Analyze 30 30 Evaluate Create

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's	Weightage %
Category	
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

Course Code :	Credits	: 04
L:T:P:S : 4:0:0:0	CIA Marks	: 40
Exam Hours : 03	ESE Marks	: 60

Course Title: ELECTIVE PAPER V ORGANIC CHEMISTRY PRACTICALS I

LEARNING OUTCOMES:

They will learn some important organic reaction & analysis the presence of functional groups.

Course Outcomes: At the end of the Course, the Student will be able to:

C01	They can able to analysis simple organic compounds (mono & bi functional groups)
	qualitatively
CO2	They can able to prepare simple organic compounds by using FGI, Functional Group
02	Inter conversion.

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO				P	PSO								
	1	2	3	4	5	6	7	8	1	2	3	4	5
C01	3	3	3	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	3	3	3	2	3	3	3	3	3	2

Sl NO	CONTENTS OF MODULE	COs
1	Organic analysis Systematic analysis of organic compounds containing mono/ bifunctional group and characterization by confirmatory tests.,.Aldehyde (aromatic), ketone, ester, nitro compounds, Carbohydrate (reducing sugars only), Carboxylic acid (both saturated and unsaturated),dicarboxylic acid, Phenol, Aromatic Amine, Aliphatic Diamide., aromatic monoamide, anilides containing one functional group and characterization by confirmatory tests.	CO1, CO2
2	Preparation of organic compounds involving the following chemical conversions, oxidation (benzaldehyde to benzoic acid), esterification(2-napthol to 2-napthyl benzoate), hydrolysis(methyl salicylate to salicyclic acid), nitration(phenol to 2,4,6-tribromo phenol), bromination(aniline to tribromo aniline), diazodization(preparation of methyl orange), osazone formation(preparation of glucosazone).	CO1, CO2

Books for reference

1. Venkateswaran, V. Veeraswamy, R. Kulandaivelu A.R., Basic Principles of Practical Chemistry, II Edn. New Delhi, Sultan Chand and Sons, (1997)

2. Furniss, B.S., et al., Vogel's Textbook of Practical Inorganic Chemistry, VII Edn. London, ELBS-Longman, (1984)

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	MODEL	ESE
Marks (out of 50)	60	60
Remember		
Understand		
Apply	30	30
Analyze	30	30
Evaluate		
Create		

Bloom's	Weightage %
Category	
Remember	
Understand	
Apply	50
Analyse	50
Evaluate	
Create	

SKILL ENHANCEMENT COURSE Course Title: ANALYTICAL CHEMISTRY PRACTICALS

Course Code :	Credits : 04
L:T:P:S : 4:0:0:0	CIA Marks : 40
Exam Hours : 03	ESE Marks : 60

Learning objective:

The objective of the course is to equip the students to measure conductance, apply the concept of potential difference to carry out titrations and to calculate thermodynamic parameters, measure absorption using colorimeter and verify and apply the Lambert-Beer law.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Determine the cell constant and explain the effects of dilution on equivalent and molar conductance.
CO2	Carry out conductometric titrations to determine the concentration of unknown acids
CO3	Learnt to use the potentiometer and carryout potentiometric titrations for acid base and redox reactions.
CO4	They learnt to use colorimeter and measure absorption to find the unknown concentrations of the given solutions.
CO5	Identify the number of components in a mixture using TLC and column chromatography.
CO6	Use polarimeter to measure specific rotation of an optically active compound such as sucrose and calculate the concentration.
CO7	Determine the thermodynamic parameters of a reaction in the Daniel cell using potentiometer.

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

	РО									PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5	
CO1	3	3	3	3	1	2	3	3	3	2	3	2	3	
CO2	3	3	3	3	1	2	3	3	3	3	2	2	3	
CO3	3	3	3	3	1	2	3	3	3	2	3	2	3	
CO4	3	3	3	3	1	2	3	3	3	2	2	3	3	
CO5	3	3	3	3	1	2	3	3	3	3	3	3	3	
CO6	3	3	3	3	1	2	3	3	3	2	3	2	3	
CO7	3	3	3	3	1	2	3	3	3	2	3	2	2	

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S No	CONTENTS OF MODULE	Hrs	COs
1	 Conductometry a) Determination of Cell constant b) Determination of Specific conductance, Molar conductance, equivalent conductance and Verification of Onsager equation 	8	CO1
2	Conductometry Determination of strength of given strong acid using strong base	6	CO2
3	Potentiometric titrations Determination of strength of a strong acid using strong base.(HCl Vs. NaOH)	10	CO3
4	Potentiometric titrations Redox titrations. (K ₂ Cr ₂ O ₇ Vs FeSO ₄)	9	CO3
5	III Colorimetry Estimation of Iron III Colorimetry	7	CO4
6	Estimation of Copper	7	
7	Chromatographic techniques*: Thin layer chromatography: Determination of R _f value of Ni and Co, Cu ions	7	CO5
8	Chromatographic techniques*: Column chromatography: Separation of mixture of organic compounds into single components (Demonstration only)	8	CO5
9	Estimation of Glucose by Polarimetric method	6	CO6
10	Determination of Thermodynamic properties for the cell reaction in a Daniel Cell by potentiometer	7	CO7

REFERENCE BOOKS:

1. Venkateswaran, V. Veeraswamy, R.Kulandaivelu A.R., Basic Principles of Practical Chemistry, II Edn. New Delhi, Sultan Chand and Sons, (1997).

2. Furniss, B.S., et al., Vogel's Textbook of Practical Inorganic Chemistry, VII Edn. London, ELBS-Longman, (1984)

3. Practical physical chemistry, Alexander Findley.

CIE- Continuous Internal Evaluation (40 Marks)

oom's Category	MODEL	ESE
arks (out of 50)	60	60
emember		
nderstand		
pply	30	30
halyze	30	30
raluate		
eate		

Bloom's Category	Weightage %
emember	
nderstand	
pply	50
nalyse	50
aluate	
eate	

OPEN ELECTIVE PAPER

CHEMISTRY IN EVERYDAY LIFE

LEARNING OBJECTIVES:

This course aims to explain the biggest role of chemistry (a branch of Science) employed in different spheres of human life such as the air we breathe, the water we use, the various cosmetic products used every day, building materials we use for construction purposes, common pharmaceutical drugs we intake, fuel studies, colour compositions of dyes and pigments and chemical fertilizers we depend on for good yield in food production.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Define hardness of water and chemical methodologies to get rid of the same.
CO2	Summarise the air pollutants which causes air pollution and their impact in human life.
СОЗ	Quote the significant role of cement, ceramics, glass and refractories.
CO4	Recall the product used in daily life with a correlation to the polymer studies.
CO5	Assess the chemical formulations of cosmetic products used in industries and their hazards.
CO6	Compare the importance of chemical fertilizers over natural fertilizers and the risks involved in using chemical fertilizers.
СО7	Compare the solid, liquid and gaseous fuel with illustration in accordance with natural and artificial sources.
CO8	Recall the chemical composition of colour pigments and dyes.
СО9	Predict the chemical formulation of drugs which are commonly used for fever and to relieve pain.

CO/PO/PSO		РО								PSO				
	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	
CO1	3	3	3	2	3	3	3	3	3	2	3	3	3	
CO2	3	3	3	2	2	3	3	3	3	2	3	3	3	
CO3	3	3	3	2	3	3	3	3	3	3	3	3	3	
CO4	3	3	3	2	3	3	3	3	3	3	3	3	3	
CO5	3	3	3	2	3	3	3	3	3	3	3	3	3	
CO6	3	3	3	2	3	3	3	3	3	3	3	3	3	
C07	3	3	3	2	3	3	3	3	3	2	3	3	3	
CO8	3	3	3	2	3	3	3	3	3	3	3	3	3	
CO9	3	3	3	2	3	3	3	3	3	2	3	3	3	

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S.No.	CONTENTS OF MODULE	Hrs	COs
1	Unit 1 General survey of chemicals used in everyday life. Air components and their importance; photo synthetic reaction, air pollution, green house effect and their impact on our life style. Water – sources of water, qualities of potable water, soft and hard water, and method of removal of hardness – water pollution.	6	CO1 &CO2
2	Unit 2	6	CO3&CO4

	 Building materials – cement, ceramics, glass and refractories – definition composition and application only. Plastics polyethylene, PVC, Bakelite, polyester, melamine formaldehyde resin- preparation and uses only 		
3	<u>Unit 3</u> Cosmetics – tooth paste, face powder, soaps and detergents, shampoos, nail polish, perfumes- general formulation and preparation- possible hazards of cosmetic use.	6	CO5
4	Unit 4Chemicals in food production – fertilizers- need, natural sources;urea, NPK fertilizers and super phosphate.Fuel-classification – solid, liquid and gaseous: nuclear fuel- examplesand uses.	6	CO6 & CO7
5	<u>Unit 5</u> Pharmaceutical drugs- analgesics and antipyretics- paracetomol and aspirin. Colour chemicals- pigments and dyes- examples and applications.	6	CO8 & CO9

REFERENCE TEXT BOOKS

- 1. R.Norrish., Chemical process industries (4th edition).
- 2. Snyder C.H., The extraordinary chemistry of ordinary things; John Wiley &Sons, Newyork.
- 3. Selinger B.K., Chemistry in the market place; Sydney 1998.
- 4. G.D.Gem Mathew., Chemistry in Everyday life.
- 5. Manahan S.E general applied chemistry., PWS Publishers.

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

OPEN ELECTIVE PAPER FOOD ADDITIVE CHEMISTRY AND FIVE BASIC SENSES

LEARNING OBJECTIVES:

This course aims to explain the approach of food additives which are the essential part of contemporary food system. These additives stimulate the sensory organs and enables nerves to relay signals to the brain. Wherein, its interpretations make commercial products more attractive for the consumers.

Explain the glazing agent from natural and nature -mimic sources and food **CO1** products which are coated with these glazing agents. Summarise the list of natural, artificial and spurious colourants used in food CO₂ products Quote the mechanism of sound and digestion correlations CO3 Recall the role of emulsifiers, stabilizers and thickeners which gives required **CO4** texture and consistency for food. Assess the sweetener in terms of Structure Activity Relationship (SAR) with **CO5** respective to its taste. Compare the type of flavourants as natural, nature-identical, artificial **CO6** flavouring substances.

Course Outcomes: At the end of the Course, the Student will be able to:

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO				Р	0						PSO		
20/10/150	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>
CO1	3	3	3	2	3	3	3	3	3	3	3	3	3
CO2	3	3	3	2	2	3	3	2	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	2	3	3	3	3	3	3	3	3
CO5	3	3	3	2	3	3	3	3	3	3	2	3	3
CO6	3	3	3	2	3	3	3	3	3	3	3	3	2

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S.No.	CONTENTS OF MODULE	Hrs	COs
1	UNIT 1 SIGHT (OPHTHALMOCEPTION): Introduction- Food Colours-Natural Colours-Spurious Colours -Glazing Agents	6	CO1&CO2
2	UNIT 2 SMELL (OLFACCEPTION): Introduction- Flavours-Flavourants –Types- Synthetic Food Flavours- Flavour Enhances –Mono Sodium Glutamate-Vinegar	6	CO6
3	<u>UNIT 3</u> <u>TASTE (GUSTAOCEPTION)</u> :	6	CO5

	Introduction –Nutritive And Non-Nutritive Sweetners- Chemistry of Sweeteners- Artificial Sweetners- Saccharin- Effect of Substitution and Taste- Cyclamate-Aspartame- Health effects		
4	UNIT 4 HEARING (AUDIOCEPTION) Introduction - Sound and Digestion –Vagus Nerve- Abdonominal/Bowel Sounds –Symptoms and Remedies	6	CO3
5	UNIT 5 <u>TOUCH (TACTIOCEPTION):</u> Introduction -Emulsifiers -Definition- Examples–Stabilizers- Definition- Examples -Thickeners Definition- Examples	6	CO4

References

- 1. Snyder C.H., The extraordinary chemistry of ordinary things; John Wiley &Sons, Newyork.
- 2. G.D.Gem Mathew., Chemistry in Everyday life.
- 3. Swaminathan.M.,Food Sciences and Experimental foods, Ganesh and Company.
- 4. Srilakshmi.B., Food Science (4th edition)., New Age International Pvt Ltd.,

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	Weightage %
Remember	38.1
Understand	38.1
Apply	21.4
Analyse	2.4
Evaluate	
Create	

OPEN ELECTIVE PAPER

FOOD CHEMISTRY

LEARNING OBJECTIVES:

This course aims to explain the scientific approach of adulterants present in food and inevitable role of food additives which are used in food products incidentally and intentionally.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Define the basic difference between oils and fats in terms of structural terminology.
CO2	Summarise the concepts of MUFA and PUFA for its pivotal role in preventing heart diseases.
CO3	Quote the role of additives like artificial sweetener, food colourants and flavouring agents and preservatives in food products.
CO4	Explain the importance of first aid to be given to a poison consumed victim.
CO5	Apply the knowledge of various chemical poisoning substances which are ingested in the food every day.
CO6	Explain the use of alcoholic and non-alcoholic beverages in everyday life.
CO7	Solve the adulteration related issues of food items by simple qualitative chemical test.

MAPPING OF COURSE OUTCOMES TO PROGRAM OUTCOMES:

CO/PO/PSO		РО									PSO					
	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>			
CO1	3	3	3	2	3	3	3	3	3	3	3	3	3			
CO2	3	3	3	2	2	3	3	3	3	3	3	3	3			

CO3	3	3	3	2	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3	3	3	3
CO5	3	3	3	2	3	3	3	3	3	3	3	3	3
CO6	3	3	3	2	3	3	3	3	3	3	3	3	3
C07	3	3	3	2	3	3	3	3	3	3	3	3	3

STRONGLY CORRELATED -3, MODERATELY CORRELATED – 2, WEAKLY CORRELATED -1

S.No.	CONTENTS OF MODULE	Hrs	COs
1	UNIT 1: Sources of food, types - Food adulteration- common adulterants – contamination of wheat, rice, dhal, milk, butter, ghee adulterants - Detection of adultered foods by simple analytical techniques.	6	C07
2	UNIT 2: Food poisons- pesticides, DDT, BHC, and Malathion – chemical poisons- first aid for poison consumed victims	6	CO4&CO5
3	UNIT 3: Food additives- artificial sweetners- saccharin- cyclamate and aspartame.Food flavours- esters, aldehydes and heterocyclic compound. Food colours- emulsifying agents- preservatives- leavening agents. Baking powder- yeast- taste makers- MSG, vinegar.	6	CO3
4	UNIT 4: Beverages- soft drinks- soda- fruit juices- alcoholic beverages examples. Carbonation- addiction to alcohol- diseases of liver and social problems	6	CO6
5	UNIT 5: Fats, oils – sources of oils – production of refined vegetable oils- preservation. Saturated and unsaturated fats- iodine value- role of MUFA PUFA in preventing heart diseases- determination of iodine value, RM value, Saponification values and their significance.	6	CO1 &CO2

References:

- 1. Swaminathan.M., Food Sciences and Experimental foods, Ganesh and Company.
- 2. Srilakshmi.B., Food Science (4th edition)., New Age International Pvt Ltd.,
- 3. G.D.Gem Mathew., Module1-Chemistry in everyday life.,
- 4. Manahan S.E general applied chemistry., PWS Publishers.
- 5. Seager S.L and Slabaugh M.R., Organic and biochemistry for today.

ASSESSMENT PATTERN

CIE- Continuous Internal Evaluation (40 Marks)

Bloom's Category	CIA I	CIA II	CIA III	ESE
Marks (out of 50)	50	50	10	100
Remember	20	20		40
Understand	20	20		40
Apply	10	10	5	20
Analyze			5	
Evaluate				
Create				

Bloom's	Weightage %	
Category		
Remember	38.1	
Understand	38.1	
Apply	21.4	
Analyse	2.4	
Evaluate		
Create		